ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

釀酒葡萄收獲機(jī)自動(dòng)對(duì)行駕駛局部路徑動(dòng)態(tài)規(guī)劃算法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD2002001),、智能農(nóng)業(yè)動(dòng)力裝備全國(guó)重點(diǎn)實(shí)驗(yàn)室開放課題(SKLIAPE2023012),、蕪湖市科技特派員專項(xiàng)(311222447023)


Local Path Dynamic Programming Algorithm for Automatic Row Alignment Traveling of Wine Grape Harvester
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    葡萄精準(zhǔn)對(duì)行采收可有效減少收獲機(jī)振動(dòng)機(jī)構(gòu)與籬架碰撞幾率,是實(shí)現(xiàn)大規(guī)模機(jī)械化采收的重要手段?;贔renet坐標(biāo)系下行間局部行駛場(chǎng)景模型,本文提出一種葡萄收獲機(jī)自動(dòng)對(duì)行路徑規(guī)劃算法,。以全局作業(yè)路徑為參考線,通過(guò)車載激光雷達(dá)實(shí)時(shí)識(shí)別前方葡萄行,利用K-means算法聚類葡萄點(diǎn)云;采用Lattice算法根據(jù)行駛車速對(duì)前方行駛區(qū)域動(dòng)態(tài)點(diǎn)陣采樣,基于五次多項(xiàng)式生成局部路徑簇;以前、后輪轉(zhuǎn)向極限位置為收獲機(jī)輪廓特征點(diǎn),進(jìn)行特征點(diǎn)與橫向條帶分割的葡萄行最小包絡(luò)矩形碰撞檢測(cè),并計(jì)算各條局部路徑相對(duì)葡萄行和參考線的偏離代價(jià);根據(jù)作業(yè)工況和環(huán)境條件確定葡萄行偏離參考線的決策限值,采用動(dòng)態(tài)規(guī)劃算法對(duì)加權(quán)求和后的偏離代價(jià)進(jìn)行尋優(yōu),獲得路徑簇中代價(jià)最小路徑作為當(dāng)前局部路徑;利用機(jī)器人仿真軟件Gazebo和Rviz聯(lián)合仿真并開展實(shí)車試驗(yàn),。結(jié)果表明,規(guī)劃的局部路徑相對(duì)葡萄行平均橫向偏差為4.37cm,最大橫向偏差為10.95cm,生成局部路徑平均絕對(duì)曲率為0.0612m-1,最大絕對(duì)曲率為0.2011m-1,。在全局路徑相對(duì)葡萄行偏移較大時(shí),局部路徑能夠有效糾正偏差,滿足葡萄收獲作業(yè)對(duì)行駕駛要求。在單次規(guī)劃6m路徑的仿真試驗(yàn)中,本文算法平均耗時(shí)213ms/次,最大耗時(shí)337ms/次;規(guī)劃6m路徑實(shí)車試驗(yàn)中,本文算法平均耗時(shí)577ms/次,最大耗時(shí)816ms/次,。研究結(jié)果可為葡萄園場(chǎng)景下農(nóng)機(jī)局部路徑規(guī)劃提供參考。

    Abstract:

    Accurate row alignment harvesting of grapes can effectively reduce the collision between vibration mechanism of the harvester and the trellis, which is an important means to achieve large-scale mechanized harvesting. Based on the local driving scene model between grape rows in Frenet coordinate system, an automatic row alignment path planning algorithm for grape harvesters was proposed. Using the global operation path as a reference line, the algorithm utilized onboard LiDAR to identify grape rows ahead in real time, and applied the K-means algorithm to cluster the point cloud of grape rows. The Lattice algorithm was used to dynamically sample the driving area ahead according to the traveling speed, and then the local path clusters were generated based on fifth-order polynomials. The extreme steering positions of the front and rear wheels were taken as the feature points of the harvester, and then the collision detections were conducted between feature points and the lateral segmentation minimum bounding rectangle of grape rows, and the offset costs of each local path relative to grape rows and the global path were calculated. Based on the operating states and environment condition, the decision limits of the grape line deviating from the reference line were determined, and the weighted sum of the offset costs were optimized by dynamic programming algorithm, and then the path with the minimum cost in the path cluster can be obtained as the current local path. The algorithm was validated through simulation by using the robot simulation software Gazebo and Rviz, as well as real experimental tests. The results showed that the average lateral error of the planned local path relative to grape rows was 4.37 cm, and the maximum absolute curvature was 0.201 1 m-1. When the global path deviated significantly from the grape row, the local path can effectively correct the deviation and meet the driving requirements for grape harvesting operations. In the simulation test for planning a path of 6 m, the average processing time of this algorithm was 213 ms per iteration, with a maximum of 337 ms per iteration. In the experimental test for planning a path of 6 m, the average processing time was 577 ms per iteration, with a maximum of 816 ms per iteration. The relevant research methods can provide reference for local path planning of agricultural machinery in vineyard scenarios.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

戴禎,郭延超,王笑樂(lè),張志寧,戴寶寶,楊洋,張鐵,陳黎卿.釀酒葡萄收獲機(jī)自動(dòng)對(duì)行駕駛局部路徑動(dòng)態(tài)規(guī)劃算法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(2):124-135. DAI Zhen, GUO Yanchao, WANG Xiaole, ZHANG Zhining, DAI Baobao, YANG Yang, ZHANG Tie, CHEN Liqing. Local Path Dynamic Programming Algorithm for Automatic Row Alignment Traveling of Wine Grape Harvester[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):124-135.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-11-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-02-10
  • 出版日期:
文章二維碼