ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)麻雀搜索算法和貝塞爾曲線的無人農(nóng)場機器人路徑規(guī)劃方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

廣東省農(nóng)業(yè)人工智能重點實驗室開放課題(GDKL AAL 2023007),、廣東省重點領(lǐng)域研發(fā)計劃項目(2023B0202090001),、廣州市重點研發(fā)計劃項目(2023B0311392)和華南農(nóng)業(yè)大學(xué)農(nóng)業(yè)裝備技術(shù)全國重點實驗室開放基金項目(SKLAET 202412)


Path Planning of Robot Based on Improved Sparrow Search Algorithm and Bessel Curve
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    優(yōu)化無人農(nóng)場作業(yè)路徑用以提升農(nóng)田管理效率和資源利用率是移動機器人導(dǎo)航領(lǐng)域的研究熱點,針對傳統(tǒng)麻雀搜索算法(Sparrow search algorithm,SSA)和強化學(xué)習(xí)算法搜索效率低,、路徑不夠光滑容易陷入局部最優(yōu)的問題,本文設(shè)計了一種融合改進(jìn)IQL(ImprovedQ-learning)算法的改進(jìn)麻雀搜索算法(Improved sparrow search algorithm,ISSA),結(jié)合貝塞爾曲線用于移動機器人的全局路徑規(guī)劃,。首先,在算法初期采用多策略初始化種群,將IQL算法與Logistic混沌映射和拉丁超立方抽樣(Latin hypercube sampling,LHS)方法相結(jié)合,為種群提供優(yōu)良性和多樣性的初始解;其次,將線性動態(tài)慣性權(quán)重調(diào)整方法引入到發(fā)現(xiàn)者位置更新中,平衡算法的全局搜索能力和局部開發(fā)能力,、提升算法收斂速度;然后,在警戒者中引入反向?qū)W習(xí)策略進(jìn)一步探索未開發(fā)區(qū)域,防止陷入局部最優(yōu)解;最后,結(jié)合避障算法和貝塞爾曲線對路徑進(jìn)行平滑處理,消除行駛路徑距離障礙物過近和路徑不平滑問題,。通過在Matlab平臺上進(jìn)行對比仿真試驗,驗證ISSA算法的有效性和優(yōu)越性,。試驗結(jié)果表明,ISSA算法有效地結(jié)合IQL算法的自學(xué)習(xí)特性和SSA算法的強大搜索能力,在網(wǎng)格仿真環(huán)境和實地場景下均顯著提高了全局路徑優(yōu)化效率,生成的路徑更加平滑,。在實地場景下,ISSA算法相較于SSA和ACO算法,路徑規(guī)劃時間分別減少64.43%、9.94%,平均最短路徑長度分別減少8.3%,、12%,。研究可為無人農(nóng)場機器人精準(zhǔn)、高效作業(yè)提供優(yōu)質(zhì)的路徑規(guī)劃方案,。

    Abstract:

    Optimizing unmanned farm paths to improve farm management efficiency and resource utilization is a hot research topic in the field of mobile robot navigation. An improved sparrow search algorithm ( ISSA) incorporating improved Q-learning ( IQL) algorithm was designed to address the problems of low search efficiency and smooth paths that can easily fall into local optimization of traditional sparrow search algorithm (SSA) and reinforcement learning algorithm. ISSA incorporating the improved IQL algorithm was designed for global path planning of mobile robots in combination with Bessel curves. Firstly, a multi-strategy initialization of the population was used at the beginning of the algorithm, combining the IQL algorithm with Logistic chaos mapping and Latin hypercube sampling (LHS) methods to provide excellent and diverse initial solutions for the population;secondly, a linear dynamic inertia weight adjustment method was introduced into the finder position updating to balance the algorithm’s global search capability and local exploitation capability, and improve the convergence speed of the algorithm;then, the reverse learning strategy was introduced into the vigilant to further explore the unexplored area and prevent falling into the local optimal solution;finally, the path was smoothed by combining obstacle avoidance algorithms and Bessel curves to eliminate the problems of traveling paths too close to obstacles and unsmooth paths. The effectiveness and superiority of ISSA algorithm was verified through comparative simulation tests on Matlab platform. The experimental results showed that the ISSA algorithm effectively combined the self-learning characteristics of the IQL algorithm and the powerful search capability of the SSA algorithm, which significantly improved the efficiency of global path optimization and generated smoother paths in both the grid simulation environment and the field scenario. In the field scenario, the ISSA algorithm reduced the path planning time by 64.43% and 9.94% , and the average value of the shortest path length by 8.3% and 12% , respectively, compared with the SSA and ACO algorithms, which provided a high-quality path planning solution for the unmanned farm robots to work accurately and efficiently.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

陸健強,陳祖城,蘭玉彬,童海洋,鮑國慶,周正揚,鄭佳祺.基于改進(jìn)麻雀搜索算法和貝塞爾曲線的無人農(nóng)場機器人路徑規(guī)劃方法[J].農(nóng)業(yè)機械學(xué)報,2025,56(2):115-123. LU Jianqiang, CHEN Zucheng, LAN Yubin, TONG Haiyang, BAO Guoqing, ZHOU Zhengyang, ZHENG Jiaqi. Path Planning of Robot Based on Improved Sparrow Search Algorithm and Bessel Curve[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):115-123.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-10-25
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-02-10
  • 出版日期:
文章二維碼