ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于DAV_DWA算法的農(nóng)業(yè)機器人局部路徑規(guī)劃
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金項目(CX(21)2006)


Local Path Planning for Agricultural Robots Based on DAV_DWA
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為解決農(nóng)業(yè)機器人在示范溫室工作通道行駛中難以避讓動態(tài)障礙物,、易陷入局部最小值、無法到達目標點等問題,提出了基于雙障礙物評價函數(shù),、自適應權重和虛擬目標法的動態(tài)窗口法(Dual obstacle cost function,adaptive weights and virtual target_dynamic window approach,DAV_DWA)來實現(xiàn)機器人局部路徑規(guī)劃,。首先,采用動靜雙策略的避障方法,將動態(tài)和靜態(tài)障礙物安全距離劃分為 2 個評價函數(shù),降低動態(tài)障礙物碰撞風險且防止對靜態(tài)障礙物過度避障;其次,提出評價函數(shù)權重自適應策略,根據(jù) 2 種障礙物距離實現(xiàn)自適應調整各評價函數(shù)權重,以增強機器人在不同復雜環(huán)境中的路徑尋優(yōu)能力;最后,提出虛擬目標法,使其脫離局部最小值后繼續(xù)導航,增強其對于局部最小值的路徑規(guī)劃能力。對比仿真試驗和溫室實地試驗結果表明,在仿真環(huán)境中,相較于其他算法,DAV_DWA算法在保證安全性的前提下,能夠在更短的時間內,以更短的路徑到達目標點;溫室障礙物場景中,機器人可以完成自主導航任務,且定位誤差不大于0.12 m,跟蹤誤差不大于0.10 m,符合實際需求,。

    Abstract:

    In order to solve the current stage of agricultural robots in the working channel of the demonstration greenhouse,dynamic obstacle processing is difficult,poor target accessibility,easy to fall into the local minimum and so on, the dual obstacle cost function,adaptive weights and virtual target_ dynamic window approach (DAV_DWA) was proposed to achieve greenhouse robot local path planning. Firstly,a dynamic static dual-strategy obstacle avoidance method was adopted,which divided the safety distance of dynamic and static obstacles into two evaluation functions to reduce the collision risk of dynamic obstacles and prevent excessive obstacle avoidance of static obstacles. Secondly, an adaptive strategy for evaluation function weights was proposed, adaptive adjustment of the weights of each evaluation function according to two obstacle distances to enhance the robot’s path-finding ability in different complex environments. Finally,the virtual goal method was proposed to enable it to continue navigation after detaching from the local minimum,so as to enhance its path planning ability for the local minimum. Comparative simulation experiments and greenhouse experiments were carried out, and the results showed that compared with other algorithms,DAV_DWA was able to reach the target point with a shorter path in a shorter time under the premise of guaranteeing the safety;in the greenhouse scenario,the robot can complete the autonomous navigation task,and the positioning error was no more than 0.12 m, and tracking error was no more than 0.10 m,which was in line with the practical requirements.

    參考文獻
    相似文獻
    引證文獻
引用本文

汪小旵,祁子涵,楊震宇,王得志,黃慧星,盧美光.基于DAV_DWA算法的農(nóng)業(yè)機器人局部路徑規(guī)劃[J].農(nóng)業(yè)機械學報,2025,56(2):105-114. WANG Xiaochan, QI Zihan, YANG Zhenyu, WANG Dezhi, HUANG Huixing, LU Meiguang. Local Path Planning for Agricultural Robots Based on DAV_DWA[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):105-114.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-10-24
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-02-10
  • 出版日期:
文章二維碼