ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于蜣螂優(yōu)化BP-PID的溫室自主跟隨平臺(tái)行走速度控制研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD2001204),、常州市科技支撐計(jì)劃項(xiàng)目(CE20232001)和江蘇省現(xiàn)代農(nóng)機(jī)裝備與技術(shù)示范推廣項(xiàng)目(NJ2023-27)


Velocity Control for Autonomous Following Platform Walking Speed Based on DBO Optimized BP-PID Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)當(dāng)前溫室作業(yè)環(huán)境復(fù)雜,、現(xiàn)有機(jī)械行走穩(wěn)定性差的問(wèn)題,本文提出了溫室自主跟隨電動(dòng)平臺(tái)行走速度控制方法。由于該系統(tǒng)存在非線性和時(shí)變性的特點(diǎn),傳統(tǒng)PID控制算法無(wú)法實(shí)現(xiàn)有效控制,因此提出了一種基于蜣螂(Dungbeetle optimizer,DBO)優(yōu)化BP神經(jīng)網(wǎng)絡(luò)PID控制算法,。該算法采用DBO優(yōu)化算法對(duì)BP神經(jīng)網(wǎng)絡(luò)的權(quán)值進(jìn)行優(yōu)化,加快了BP神經(jīng)網(wǎng)絡(luò)的自學(xué)習(xí)速率,實(shí)現(xiàn)對(duì)溫室自主跟隨電動(dòng)平臺(tái)行走速度的快速精確控制,提高系統(tǒng)的響應(yīng)速度并降低超調(diào)量,最后,將本文提出的行走速度控制算法與PID控制算法,、BP-PID控制算法、遺傳算法(Genetical gorithm,GA)優(yōu)化PID控制算法、蟻群算法(Antcolony optimization,ACO)優(yōu)化PID控制算法對(duì)比,。試驗(yàn)結(jié)果表明,當(dāng)行走速度為1m/s時(shí),系統(tǒng)平均響應(yīng)速度為0.11s,調(diào)整時(shí)間為0.27s,最大超調(diào)量為2.44%;當(dāng)履帶線速度大小和方向發(fā)生變化時(shí),系統(tǒng)依然表現(xiàn)出響應(yīng)速度快,、超調(diào)量小且穩(wěn)態(tài)過(guò)程無(wú)振蕩的優(yōu)點(diǎn)。DBO-BP-PID控制算法在控制穩(wěn)定性和控制精度上表現(xiàn)更優(yōu),有效降低了系統(tǒng)時(shí)滯性和非線性影響,滿足溫室自主跟隨電動(dòng)平臺(tái)行走速度控制的需求,。

    Abstract:

    This study addresses the issues of complexity in greenhouse operational environments and poor stability of existing mechanical walking systems by conducting research on the autonomous following electric platform walking speed control in greenhouses. Due to the system’s inherent nonlinearity and time-varying characteristics, traditional PID control algorithms fail to achieve effective control. Therefore, a dung beetle optimizer (DBO) optimized BP neural network PID control algorithm was proposed. This algorithm optimized the weights of the BP neural network by using the DBO algorithm, thereby accelerating the self-learning rate of the BP neural network. It achieved rapid and precise control of the greenhouse autonomous following electric platform walking speed, enhanced system response speed, and reduced overshoot. Experimental results demonstrated that at a walking speed of 1 m / s, the system exhibited an average response speed of 0.11 s, settling time of 0.27 s, and a maximum overshoot of 2.44% . When there were changes in track speed and direction, the system maintained advantages of fast response, minimal overshoot, and oscillation-free steady-state process. Compared with PID control algorithm, BP-PID control algorithm, GA-PID control algorithm, ACO-PID control algorithm, the DBO-BP-PID control algorithm showed superior performance in control stability and precision, effectively mitigating system hysteresis and nonlinear effects, thereby meeting the control requirements for greenhouse autonomous following electric platform walking speed.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

肖茂華,陳泰,莊曉華,朱燁均,胡藝?yán)_,王鴻翔.基于蜣螂優(yōu)化BP-PID的溫室自主跟隨平臺(tái)行走速度控制研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(2):83-91,,154. XIAO Maohua, CHEN Tai, ZHUANG Xiaohua, ZHU Yejun, HU Yibin, WANG Hongxiang. Velocity Control for Autonomous Following Platform Walking Speed Based on DBO Optimized BP-PID Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):83-91,154.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-10-09
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-02-10
  • 出版日期:
文章二維碼