ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于雙觀測值融合卡爾曼濾波器的水田農(nóng)機(jī)轉(zhuǎn)向輪角估計(jì)方法與試驗(yàn)
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021YFD2000600)


Estimation Method and Experiment of Wheel Angle of Paddy Field Agricultural Machinery Based on Dual Observation Fusion Kalman Filter
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對水田自動駕駛農(nóng)機(jī)遇到側(cè)滑時速度突變導(dǎo)致轉(zhuǎn)角估計(jì)不準(zhǔn)確的問題,本文提出了一種基于雙觀測值融合卡爾曼濾波器的水田作業(yè)農(nóng)機(jī)轉(zhuǎn)向輪角估計(jì)方法,建立了水田作業(yè)農(nóng)機(jī)轉(zhuǎn)向輪角估計(jì)模型,。首先采用改進(jìn)型兩輪農(nóng)機(jī)側(cè)滑模型獲得基于運(yùn)動學(xué)模型的水田農(nóng)機(jī)前輪轉(zhuǎn)向角度,其次對所采集的GPS速度和慣性導(dǎo)航速度采用加權(quán)觀測融合的方法對轉(zhuǎn)向模型的水田農(nóng)機(jī)作業(yè)速度進(jìn)行補(bǔ)償,最后提出了基于雙觀測值融合卡爾曼濾波器的水田作業(yè)農(nóng)機(jī)輪向輪角估計(jì)方法,將基于運(yùn)動學(xué)模型的前輪轉(zhuǎn)向角和基于轉(zhuǎn)向電機(jī)編碼的前輪轉(zhuǎn)向角作為雙觀測值,從而估計(jì)水田農(nóng)機(jī)前輪轉(zhuǎn)角,。為驗(yàn)證本文所提方法,以水稻直播機(jī)為研究平臺,在水田中開展速度校正、前輪轉(zhuǎn)向角估計(jì)試驗(yàn)和直線跟蹤試驗(yàn),。速度校正試驗(yàn)結(jié)果表明,水田硬底層高低不平是前輪轉(zhuǎn)角擬合精度不佳的直接原因,本文所提方法將直播機(jī)速度穩(wěn)定在一定范圍內(nèi),解決了因水田硬底層起伏變化造成前輪轉(zhuǎn)角擬合精度不佳的問題,。前輪轉(zhuǎn)向角估計(jì)試驗(yàn)結(jié)果表明,農(nóng)機(jī)前輪估計(jì)角度相對角度傳感器角度變化跟蹤誤差平均值為0.12°,偏差最大值為1.67°,偏差標(biāo)準(zhǔn)差為0.4°。本文所提方法能夠準(zhǔn)確地測量農(nóng)機(jī)前輪轉(zhuǎn)向角,最終控制直播機(jī)穩(wěn)定追蹤目標(biāo)角度,滿足水田農(nóng)機(jī)前輪轉(zhuǎn)角估計(jì)精度要求。直線跟蹤試驗(yàn)結(jié)果表明,在水田環(huán)境下,平均絕對誤差為3.14cm,位置偏差標(biāo)準(zhǔn)差為2.11cm,。本文提出的方法適用于水田無人駕駛,提高了轉(zhuǎn)角估計(jì)精度和農(nóng)機(jī)導(dǎo)航作業(yè)質(zhì)量,。

    Abstract:

    In order to solve the problem that the sudden change of the speed of automatic driving agricultural machinery in paddy field leads to inaccurate angle estimation, a steering wheel angle estimation method of agricultural machinery in paddy field was proposed based on dual observation fusion Kalman filter, and a steering wheel angle estimation model of agricultural machinery in paddy field was established. Firstly, the improved two-wheeled agricultural machinery sideslip model was used to obtain the front wheel steering angle of paddy agricultural machinery based on kinematics model. Secondly, the collected GPS speed and inertial navigation speed were compensated by weighted observation fusion method. Finally, a method for estimating the front wheel steering angle of paddy agricultural machinery based on dual observation fusion Kalman filter was proposed, which took the front wheel steering angle based on kinematics model and the front wheel steering angle based on steering motor coding as dual observation values, so as to estimate the front wheel steering angle of paddy agricultural machinery. In order to verify the proposed method, speed correction, front wheel steering angle estimation test and linear tracking test were carried out in paddy field on the platform of rice direct seeding machine. The results of speed correction test showed that the unevenness of paddy field hard bottom layer was the direct reason for the poor fitting accuracy of front wheel angle. The proposed method stabilized the speed of direct seeding machine in a certain range, and solved the problem of poor fitting accuracy of front wheel angle caused by the fluctuation of paddy field hard bottom layer. The front wheel steering angle estimation experiment showed that the average tracking error of the virtual wheel angle relative to the angle change of the angle sensor was 0.12°, the maximum deviation was 1.67°and the standard deviation was 0.4°. The method can accurately measure the steering angle of the front wheel of agricultural machinery, and finally control the direct seeding machine to track the target angle stably, which met the accuracy requirements of estimation of front wheel angle of agricultural machinery in paddy field. The results of linear tracking test showed that the average error was 3.14 cm and the standard deviation of position deviation was 2.11 cm in paddy field environment. The method proposed was suitable for unmanned paddy field, which improved the accuracy of corner estimation and the quality of agricultural machinery navigation.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

滿忠賢,何杰,馮達(dá)文,李仁浩,鄧小兵,涂團(tuán)鵬,汪沛,胡煉.基于雙觀測值融合卡爾曼濾波器的水田農(nóng)機(jī)轉(zhuǎn)向輪角估計(jì)方法與試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(2):38-47. MAN Zhongxian, HE Jie, FENG Dawen, LI Renhao, DENG Xiaobing, TU Tuanpeng, WANG Pei, HU Lian. Estimation Method and Experiment of Wheel Angle of Paddy Field Agricultural Machinery Based on Dual Observation Fusion Kalman Filter[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):38-47.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-11-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-02-10
  • 出版日期:
文章二維碼