ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

大田無人化智慧農(nóng)場農(nóng)田邊界識(shí)別技術(shù)研究現(xiàn)狀與展望
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021YFD2000600)


Research Status and Outlook of Farmland Boundary Recognition Technology in Large-scale Unmanned Smart Farms
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    智慧農(nóng)業(yè)是現(xiàn)代農(nóng)業(yè)的發(fā)展方向,無人化智慧農(nóng)場是實(shí)現(xiàn)智慧農(nóng)業(yè)的重要途徑,無人化智慧農(nóng)場是農(nóng)業(yè)轉(zhuǎn)型升級(jí)的重要方向,其精準(zhǔn)高效作業(yè)質(zhì)量依賴于農(nóng)田邊界識(shí)別技術(shù)的精度和可靠性,。本文系統(tǒng)梳理了農(nóng)田邊界識(shí)別的技術(shù)體系與應(yīng)用場景,重點(diǎn)分析了衛(wèi)星遙感,、無人機(jī)遙感和地面感知3類數(shù)據(jù)獲取方式和識(shí)別算法研究現(xiàn)狀。衛(wèi)星遙感的優(yōu)勢(shì)在于其廣域周期性的監(jiān)測(cè)能力可支撐大范圍農(nóng)田變化分析,但空間分辨率有限;無人機(jī)高分辨率影像與地面?zhèn)鞲衅魃疃热诤?如 LiDAR 點(diǎn)云與 RGB 圖像配準(zhǔn))可實(shí)現(xiàn)厘米級(jí)邊界分割,為復(fù)雜農(nóng)田場景提供高精度數(shù)據(jù)支撐,但視野范圍有限,。傳統(tǒng)圖像處理算法(閾值分割,、邊緣檢測(cè)等)在規(guī)則農(nóng)田中具有實(shí)時(shí)性優(yōu)勢(shì),但難以應(yīng)對(duì)異物同譜、靜態(tài)要素遮擋等場景;基于深度學(xué)習(xí)的 U-Net,、DeepLab 系列模型通過多尺度特征融合與注意力機(jī)制優(yōu)化可顯著提升對(duì)不規(guī)則邊界的識(shí)別魯棒性,。 這些技術(shù)都已應(yīng)用于農(nóng)業(yè)數(shù)字化地圖構(gòu)建和農(nóng)機(jī)路徑規(guī)劃,但仍面臨多源數(shù)據(jù)時(shí)空對(duì)齊精度不足導(dǎo)致融合效率低,輕量化模型在邊緣計(jì)算設(shè)備上的推理速度難以滿足實(shí)時(shí)作業(yè)需求,農(nóng)田邊界變動(dòng)實(shí)時(shí)監(jiān)測(cè)難等問題,。未來應(yīng)聚焦多模態(tài)時(shí)空特征融合、邊緣推理導(dǎo)向的模型輕量化技術(shù),以及空-天-地協(xié)同支撐下的數(shù)字農(nóng)田地圖自主更新技術(shù),為實(shí)現(xiàn)農(nóng)田邊界的高精度,、高響應(yīng)和高動(dòng)態(tài)識(shí)別提供支撐,。

    Abstract:

    Smart agriculture is the development direction of modern agriculture, and unmanned smart farms are an important way to achieve smart agriculture. Unmanned smart farm is an important direction for agricultural transformation and upgrading, and its precise and efficient operation quality depends on the accuracy and reliability of farmland boundary recognition technology. The technical system and workflow methods of farmland boundary recognition were systematically reviewed, with a focus on analyzing the characteristics and application scenarios of three types of data acquisition methods: satellite remote sensing, UAV remote sensing, and ground-based sensing. The advantage of satellite remote sensing lies in its wide-area, periodic monitoring capability that supports large-scale farmland change analysis, though its spatial resolution is limited. UAV high-resolution images, when deeply integrated with ground sensors ( LiDAR point clouds and RGB image registration), can achieve centimeter-level boundary segmentation, providing high-precision data support for complex farmland scenarios, but its field of view is limited. Traditional image processing algorithms (threshold segmentation, edge detection) offer real-time advantages in regular farmlands but struggle with scenarios involving objects of similar spectra and static element occlusions. Deep learning-based models such as U Net and DeepLab, through multi-scale feature fusion and attention mechanisms, significantly enhance the robustness of irregular boundary recognition. Current technologies support the construction of digital maps and agricultural machinery path planning. However, there are still three main bottlenecks: insufficient spatio- temporal alignment accuracy of multi-source data, resulting in low fusion efficiency; slow inference speeds of lightweight models on edge computing devices, which failed to meet real-time operation demands; and the lack of dynamic farmland boundary update mechanisms, restricting long-term monitoring effectiveness. Future research should focus on multi-modal spatio-temporal feature fusion, lightweight model technologies driven by edge inference, and a framework for autonomous updating of digital farmland maps supported by air space ground collaboration, to provide theoretical support for high-precision, high-response, and high-dynamic boundary recognition in farmlands.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

羅錫文,谷秀艷,胡煉,趙潤茂,岳孟東,何杰,黃培奎,汪沛.大田無人化智慧農(nóng)場農(nóng)田邊界識(shí)別技術(shù)研究現(xiàn)狀與展望[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(2):1-18. LUO Xiwen, GU Xiuyan, HU Lian, ZHAO Runmao, YUE Mengdong, HE Jie, HUANG Peikui, WANG Pei. Research Status and Outlook of Farmland Boundary Recognition Technology in Large-scale Unmanned Smart Farms[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):1-18.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-11-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-02-10
  • 出版日期:
文章二維碼