ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于胎內(nèi)周向應(yīng)變的非道路輪胎垂向載荷反演優(yōu)化算法研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD2000300)、國(guó)家自然科學(xué)基金項(xiàng)目(52175259)和拼多多-中國(guó)農(nóng)業(yè)大學(xué)研究基金項(xiàng)目(PC2023B01005)


Inverse Optimization Algorithm for Vertical Load of Non-road Tire Based on In-tire Circumferential Strain
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    非道路輪胎具有結(jié)構(gòu)尺寸大,、工況惡劣多變,、載荷波動(dòng)明顯等典型特征,其垂向載荷顯著影響車輛的縱向,、垂向,、側(cè)向動(dòng)力學(xué)特性。針對(duì)非道路輪胎垂向載荷獲取困難,、傳統(tǒng)物理模型推演精度不足的問(wèn)題,,提出了一種基于應(yīng)變信息與機(jī)器學(xué)習(xí)技術(shù)的垂向載荷反演算法,。以R-1型人字花紋非道路輪胎為研究對(duì)象,設(shè)計(jì)了由大量程柔性應(yīng)變傳感器,、低功耗數(shù)據(jù)采集及無(wú)線傳輸模塊組成的輪胎應(yīng)變信息采集系統(tǒng),。以胎壓、速度,、載荷等參數(shù)為變量,,在轉(zhuǎn)鼓試驗(yàn)臺(tái)上開(kāi)展了多種典型工況測(cè)試,分析了輪胎接地點(diǎn)的應(yīng)變變化規(guī)律,。在此基礎(chǔ)上,,構(gòu)建了面向輪胎垂向載荷估計(jì)的深度神經(jīng)網(wǎng)絡(luò)模型,并基于AdamW優(yōu)化器與網(wǎng)格搜索法開(kāi)展了算法參數(shù)優(yōu)化,。試驗(yàn)結(jié)果表明,,基于AdamW優(yōu)化器的深度神經(jīng)網(wǎng)絡(luò)模型對(duì)非道路輪胎垂向載荷預(yù)測(cè)表現(xiàn)出較高的精度,各工況下最大平均相對(duì)誤差由4.10%降至0.30%,。此外,針對(duì)模型泛化能力的測(cè)試結(jié)果顯示,,深度神經(jīng)網(wǎng)絡(luò)模型平均歸一化均方根誤差較SVR模型降低55.91%,,泛化性能優(yōu)越。研究表明,,所提出基于AdamW優(yōu)化器的深度神經(jīng)網(wǎng)絡(luò)模型可對(duì)以應(yīng)變信息為輸入的非道路輪胎垂向載荷進(jìn)行準(zhǔn)確反演,,為非道路車輛的動(dòng)力學(xué)控制系統(tǒng)提供可靠的輪胎力學(xué)關(guān)鍵參數(shù)獲取依據(jù)。

    Abstract:

    Non-road tires have typical characteristics such as large structural size, harsh and changeable working conditions, and obvious load fluctuations. Its vertical load significantly affects the longitudinal, vertical and lateral dynamic characteristics of the vehicle. Aiming at the problem of difficulty in obtaining the vertical load of non-road tires and the insufficient accuracy of traditional physical model deductions, a vertical load inversion algorithm was proposed based on strain information and machine learning technology. Taking the R-1 herringbone pattern non-road tire as the research object, a tire strain information collection system consisting of a large-range flexible strain sensor, low-power data collection and wireless transmission module was designed. Using parameters such as tire pressure, speed, load as variables, a variety of typical working condition tests were carried out on the drum test bench, and the strain change pattern of the tire contact point was analyzed. On this basis, a deep neural network model for tire-oriented vertical load estimates was built. The algorithm parameter optimization was carried out based on the AdamW optimizer and grid search method. The test results showed that the deep neural network model based on AdamW optimizer showed a high accuracy on the prediction of the non-road tire vertical load prediction. Under the trial conditions, the maximum average relative error was reduced from 4.10% to 0.30%. Test results for the generalization capacity of models showed that the average naturalization of deep neural network models was reduced by 55.91% compared with the SVR model, and the generalization performance was superior. Studies showed that the deep neural network model proposed based on the AdamW optimizer had accurate reaction to the non-road tire vertical load. This method provided the basis for the acquisition of reliable key parameters of tire mechanics for the dynamic control system of non-road vehicles.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王亞?wèn)|,宋寅東,王彥民,張劍,何志祝,李臻.基于胎內(nèi)周向應(yīng)變的非道路輪胎垂向載荷反演優(yōu)化算法研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(1):463-473. WANG Yadong, SONG Yindong, WANG Yanmin, ZHANG Jian, HE Zhizhu, LI Zhen. Inverse Optimization Algorithm for Vertical Load of Non-road Tire Based on In-tire Circumferential Strain[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(1):463-473.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-08-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-01-10
  • 出版日期:
文章二維碼