ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于UMS-YOLO v7的面向樣本不均衡的水下生物多尺度目標(biāo)檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(61972240,、42106190)


Multi-scale Object Detection Method for Underwater Organisms under Unbalanced Samples Based on UMS-YOLO v7
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對水下目標(biāo)檢測面臨著生物尺度變化大以及樣本不均衡的問題,,本文提出一種水下生物多尺度目標(biāo)檢測方法(Underwater multi-scale-YOLO v7,,UMS-YOLO v7),。首先,設(shè)計(jì)一種由可切換空洞卷積組成的特征提取模塊,,該模塊可在不同大小的感受野上捕獲多尺度目標(biāo)特征,,使得提取的特征信息更加全面;其次,,使用輕量級的上采樣算子融合上下文信息,,提高模型對目標(biāo)的特征學(xué)習(xí)能力;最后,,通過結(jié)合Wise-IoU和歸一化Wasserstein距離兩種相似性度量,,提高了不同尺度目標(biāo)的定位精度,同時(shí)降低了多尺度樣本分布不均衡對模型的影響,。實(shí)驗(yàn)結(jié)果表明,,該模型相較于當(dāng)前其他模型在檢測精度方面表現(xiàn)出明顯的提升,在RUOD和DUO數(shù)據(jù)集上平均精度均值分別達(dá)到64.5%和68.9%,。與YOLO v7模型相比,,UMS-YOLO v7提高了多種尺度目標(biāo)檢測精度,在DUO數(shù)據(jù)集上,,針對大、中,、小3種尺度目標(biāo)平均精度均值分別提升8.3,、4.8,、12.5個百分點(diǎn),其中小目標(biāo)提升效果最為顯著,。與現(xiàn)有的其他模型相比,,改進(jìn)的模型具有更高的檢測精度,更適用于水下生物多尺度目標(biāo)檢測任務(wù),,并且針對不同數(shù)據(jù)分布的樣本具有泛化性和魯棒性,。

    Abstract:

    In response to the challenges posed by significant variations in biological scales and the issue of sample imbalance in underwater object detection, a multi-scale object detection method for underwater organisms (UMS-YOLO v7) was proposed. Firstly, a feature extraction module was designed, comprising switchable atrous convolutions. This module captured multi-scale target features across various receptive field sizes, ensuring a more comprehensive extraction of feature information. Secondly, a lightweight universal upsampling operator was employed to fuse contextual information, enhancing the model’s ability to learn features for objects. Finally, by combining two similarity metrics, Wise-IoU and normalized Wasserstein distance, the localization accuracy of targets at different scales was improved, simultaneously mitigated the impact of uneven distribution of multi-scale samples on the model. The experimental results demonstrated that the proposed model significantly enhanced detection accuracy compared with other current models, with average accuracies of 64.5% and 68.9% on the RUOD and DUO datasets, respectively. Compared with the YOLO v7 model, UMS-YOLO v7 improved multi-scale object detection accuracy, and precise detection of underwater organisms can also be achieved in complex underwater environments. On the DUO dataset, the average accuracy for large, medium, and small-scale objects was respectively increased by 8.3 percentage points, 4.8 percentage points, and 12.5 percentage points, respectively, with the most notable improvement observed for small objects. In comparison with other existing models, the improved model exhibited higher detection accuracy, and it was better suited for underwater biological multi-scale object detection tasks. Additionally, it exhibited generalization, robustness, and adaptability for samples with different data distributions.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張明華,黃基萍,宋巍,肖啟華,趙丹楓.基于UMS-YOLO v7的面向樣本不均衡的水下生物多尺度目標(biāo)檢測方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(1):388-396,409. ZHANG Minghua, HUANG Jiping, SONG Wei, XIAO Qihua, ZHAO Danfeng. Multi-scale Object Detection Method for Underwater Organisms under Unbalanced Samples Based on UMS-YOLO v7[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(1):388-396,,409.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-01-25
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-01-10
  • 出版日期:
文章二維碼