ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

主干信息共享與多感受野特征自適應融合的作物葉片等級和病害識別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(62171206、62061022)和中國煙草總公司云南省公司煙葉智能分級項目(HZ2021K0462A)


Crop Leaf Grade and Disease Recognition Method Based on Backbone Information Sharing and Multi-receptive Field Feature Adaptive Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    作物葉片等級和病害的快速準確識別對開發(fā)農業(yè)智能設備以促進農產(chǎn)品精細化管理有著重要意義,。針對作物葉片等級和病害識別準確率低,、成本高等問題,,提出主干信息共享與多感受野特征自適應融合的作物葉片等級和病害識別算法(Crop leaf grade and disease recognition network,CLGDRNet),。首先,,CLGDRNet采用CSPNet、GhostNet,、ShuffleNet構建特征提取主干網(wǎng)絡,,同時將CSPNet、GhostNet,、ShuffleNet所提取的特征信息進行共享以達到信息互補的目的,;其次,設計多感受野特征自適應融合模塊(Multi-receptive field feature adaptive fusion module,,MRFA),,將不同感受野特征圖進行自適應加權融合,在增強模型局部感受野的同時突出有效通道信息,;最后,,提出一種深層梯度跨空間學習高效多尺度注意力模塊(Efficient multi-scale attention mechanism with deep gradient cross-space learning,EMAD),,將EMAD嵌入模型的頸部以獲取深層梯度信息和目標坐標信息并跨空間融合不同尺度的上下文信息,,使模型能夠對深層特征圖產(chǎn)生更精確的像素級關注。實驗結果表明,,CLGDRNet在初烤煙葉分級數(shù)據(jù)集(Tobacco leaf grading dataset, TLGD)上識別精度[email protected][email protected]:0.95分別達到85.0%,、76.1%,在蘋果葉病害數(shù)據(jù)集(Apple leaf disease dataset, ALDD)上識別精度[email protected][email protected]:0.95分別達到97.6%,、74.2%,。相較于多種先進目標檢測算法,CLGDRNet具有更高的識別精度,,可為高精度作物葉片等級和病害識別提供關鍵技術支撐,。

    Abstract:

    Rapid and accurate recognition of crop leaf grade and disease is integral to the advancement of intelligent equipment for promoting refined management of agricultural products. In response to the problems of low accuracy and high cost of crop leaf grade and disease recognition, a crop leaf grade and disease recognition network (CLGDRNet) was proposed based on backbone information sharing and multi-receptive field feature adaptive fusion. Firstly, CSPNet, GhostNet and ShuffleNet were utilized to build a feature extraction backbone, and the feature information extracted by CSPNet, GhostNet and ShuffleNet was shared to achieve the purpose of information complementarity. Secondly, a multi-receptive field feature adaptive fusion module (MRFA) was designed, and the different receptive field feature maps were adaptively weighted and fused to highlight the effective channel information while enhancing the local receptive fields. Finally, an efficient multi-scale attention mechanism with deep gradient cross-space learning (EMAD) was proposed, the EMAD was embedded in the neck to obtain the deep gradient information and the target coordinate information, in addition, the context information of different scales was fused across the space, which could generate more accurate pixel-level attention to the deep feature map. The experimental results showed that the recognition accuracy of [email protected] and [email protected]:0.95 for tobacco leaf grading dataset (TLGD) achieved 85.0% and 76.1%, respectively, and 97.6% and 74.2% for apple leaf disease dataset (ALDD), respectively. Compared with a variety of advanced target detection algorithms, CLGDRNet achieved higher recognition accuracy and faster recognition speed, which could provide key technical support for high-precision fine recognition of crop leaves.

    參考文獻
    相似文獻
    引證文獻
引用本文

羅洋,何自芬,張印輝,陳光晨.主干信息共享與多感受野特征自適應融合的作物葉片等級和病害識別方法[J].農業(yè)機械學報,2025,56(1):377-387. LUO Yang, HE Zifen, ZHANG Yinhui, CHEN Guangchen. Crop Leaf Grade and Disease Recognition Method Based on Backbone Information Sharing and Multi-receptive Field Feature Adaptive Fusion[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(1):377-387.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-01-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-01-10
  • 出版日期:
文章二維碼