ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)DeblurGANv2模型的小麥條銹菌夏孢子離焦模糊顯微圖像復(fù)原方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(32301701),、安徽省高等學(xué)??茖W(xué)研究項(xiàng)目(2022AH050085),、合肥市自然科學(xué)基金項(xiàng)目(202309)、合肥市關(guān)鍵共性技術(shù)研發(fā)“揭榜掛帥”項(xiàng)目(GJ2022QN06)和河南省重點(diǎn)研發(fā)專(zhuān)項(xiàng)(241111110800)


Restoration of Defocused Blurred Microscopic Images of Urediniospores of Wheat Stripe Rust Based on Improved DeblurGANv2 Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)復(fù)雜工況下孢子捕捉設(shè)備顯微成像易出現(xiàn)離焦模糊導(dǎo)致高頻信息缺失和夏孢子邊緣模糊等問(wèn)題,提出了一種改進(jìn)DeblurGANv2模型的小麥條銹菌夏孢子離焦模糊顯微圖像復(fù)原方法,。首先,,在DeblurGANv2模型特征融合模塊后設(shè)計(jì)引入一個(gè)自底向上的5層特征增強(qiáng)模塊,縮短淺層特征向深層特征的傳播路徑,,增強(qiáng)不同尺度特征信息的相互融合,,提升模型對(duì)高頻和孢子邊緣等信息的復(fù)原效果;同時(shí),,在特征提取主干網(wǎng)絡(luò)部分引入卷積注意力機(jī)制(Convolutional block attention module,,CBAM),在空間和通道2個(gè)維度增加夏孢子特征信息權(quán)重,,提升模型對(duì)夏孢子的特征表達(dá)能力,,豐富復(fù)原圖像中夏孢子細(xì)節(jié)信息;最后,,選取4種主流目標(biāo)檢測(cè)模型YOLO v5,、Faster-R CNN、CenterNet和YOLO v8對(duì)復(fù)原前后的圖像進(jìn)行夏孢子檢測(cè),,對(duì)比改進(jìn)DeblurGANv2復(fù)原模型對(duì)檢測(cè)性能的影響,。試驗(yàn)結(jié)果表明,改進(jìn)后DeblurGANv2復(fù)原模型均方誤差,、峰值信噪比和結(jié)構(gòu)相似性指標(biāo)分別為0.0014,、28.88 dB、0.966,,相較于原始DeblurGANv2模型性能分別提升17.65%,、3.29%、0.35%,;4種目標(biāo)檢測(cè)模型在結(jié)合改進(jìn)DeblurGANv2復(fù)原模型去模糊后,,檢測(cè)性能指標(biāo)均有不同程度提升,其中結(jié)合改進(jìn)DeblurGANv2復(fù)原的YOLO v8模型性能表現(xiàn)最優(yōu),,精確率,、召回率、平均精度均值分別為96.1%,、95.1%,、97.7%,與直接使用YOLO v8檢測(cè)模型相比,,分別提升3.0,、5.0、23.6個(gè)百分點(diǎn),,驗(yàn)證了本文提出的改進(jìn)DeblurGANv2復(fù)原模型可復(fù)原出顯微圖像中離焦模糊夏孢子信息,,顯著提升了夏孢子目標(biāo)檢測(cè)模型檢測(cè)性能,為氣傳小麥條銹菌夏孢子檢測(cè)提供了技術(shù)支持,。

    Abstract:

    Due to the shallow depth of field inherent in optical microscopic imaging of micron-scale spores, defocused blurred images frequently occur, resulting in the loss of high-frequency information and blurred edges of urediniospores. Defocus deblurring restoration is crucial for the subsequent accurate detection of spore targets, making it a critical technical foundation for the early prevention and control of airborne wheat stripe rust. To address the issues of high-frequency information loss and blurred edges of urediniospores caused by defocused blurring in microscopic imaging of spore capturing devices under complex conditions, an improved DeblurGANv2 method for deblurring microscopic images of urediniospores was proposed. Firstly, a bottom-up five-level feature enhancement module after the feature fusion module of DeblurGANv2 was introduced, which shortened the propagation path from shallow features to deep features, enhancing the mutual fusion of features at different scales and improving the model’s ability to restore high-frequency and spore edge features. Simultaneously, the convolutional block attention module (CBAM) was incorporated into the feature extraction backbone network, increasing the weight of urediniospore feature information in both spatial and channel dimensions, enhancing the model’s capacity to express urediniospore features and enriching the detail information in the restored images. Finally, four mainstream object detection models, including YOLO v5, Faster-R CNN, CenterNet, and YOLO v8 were employed to detect urediniospores in images before and after restoration, comparing the impact of the improved DeblurGANv2 model on detection performance. The experimental results indicated that the improved DeblurGANv2 restoration model achieved mean squared error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM) values of 0.001 4, 28.88 dB, and 0.966, respectively, representing improvements of 17.65%, 3.29%, and 0.35% over the original DeblurGANv2 model, respectively. Furthermore, the four object detection models exhibited varying degrees of performance enhancement when combined with the improved DeblurGANv2 model. Among them, the YOLO v8 model, utilizing the improved DeblurGANv2 restoration, demonstrated the best performance, with precision (P), recall (R), and mean average precision (mAP@0.5) values of 96.1%, 95.1%, and 97.7%, respectively, an increase of 3.0, 5.0, and 23.6 percentage points compared with that using the YOLO v8 detection model directly. This validated the effectiveness of the proposed improved DeblurGANv2 model in recovering defocused and blurred spore information in microscopic images, significantly enhancing the detection performance of spore detection models and providing technical support for the airborne detection of urediniospores.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

雷雨,陳旭,阮超,錢(qián)海明,李勁松,黃林生,趙晉陵.基于改進(jìn)DeblurGANv2模型的小麥條銹菌夏孢子離焦模糊顯微圖像復(fù)原方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(1):366-376. LEI Yu, CHEN Xu, RUAN Chao, QIAN Haiming, LI Jinsong, HUANG Linsheng, ZHAO Jinling. Restoration of Defocused Blurred Microscopic Images of Urediniospores of Wheat Stripe Rust Based on Improved DeblurGANv2 Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(1):366-376.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-09-29
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2025-01-10
  • 出版日期:
文章二維碼