ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于無人機遙感數(shù)據(jù)和機器學(xué)習(xí)的向日葵LAI反演
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

山東省自然科學(xué)基金項目(ZR2021MD091)和山東省引進頂尖人才“一事一議”專項經(jīng)費項目(魯政辦字[2018]27號)


Sunflower LAI Inversion Based on Unmanned Aerial Vehicle Remote Sensing Data and Machine Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為快速、準確獲取育種向日葵葉面積指數(shù),,通過無人機搭載多光譜相機和DJI L1型激光雷達鏡頭,,獲取向日葵現(xiàn)蕾期、開花期和成熟期的無人機遙感數(shù)據(jù),。計算了9種多光譜植被指數(shù)和8類紋理特征,,提取了8種LiDAR特征參數(shù),利用皮爾遜相關(guān)系數(shù)法篩選出與LAI相關(guān)性高的4種植被指數(shù),、3類紋理特征和4種LiDAR特征參數(shù),;采用K近鄰(K-nearest neighbor, KNN)、隨機森林(Random forest,,RF),、極致梯度提升樹(eXtreme gradient boosting,XGBoost)和分類提升算法(Category boosting,,CatBoost),,分別構(gòu)建基于植被指數(shù)、紋理特征,、LiDAR特征參數(shù),、植被指數(shù)+紋理特征、植被指數(shù)+LiDAR特征參數(shù),、紋理特征+LiDAR特征參數(shù)和3類特征組合的向日葵LAI估測模型,,利用決定系數(shù)(Coefficient of determination,R2)和均方根誤差(Root mean square error,,RMSE)來評價模型精度,;采用最佳模型反演育種向日葵LAI并將其可視化。結(jié)果表明,,CatBoost算法與植被指數(shù)+紋理特征+LiDAR特征參數(shù)建立的向日葵LAI估測模型在3個時期的效果最好,,決定系數(shù)分別為0.93、0.91和0.90,,均方根誤差分別為0.13,、0.14和0.15。研究結(jié)果可為向日葵育種及田間精準管理提供依據(jù),。

    Abstract:

    To quickly and accurately ascertain the leaf area index (LAI) of breeding sunflowers, unmanned aerial vehicle (UAV) remote sensing data were collected at the budding, flowering, and maturation phases of the sunflowers by utilizing a multispectral camera and DJI L1 LiDAR lens. The analysis included the computation of nine multispectral vegetation indices and eight categories of texture features, alongside the extraction of eight LiDAR feature parameters. By applying the Pearson correlation coefficient method, four vegetation indices, three texture categories, and four LiDAR features, which exhibited a high correlation with LAI, were identified for further analysis.The study employed machine learning algorithms, namely K-nearest neighbor (KNN), random forest (RF), eXtreme gradient boosting (XGBoost), and category boosting (CatBoost), to develop models for estimating the LAI of sunflowers. These models were based on singular and combined inputs of vegetation indices, texture features, and LiDAR feature parameters. The accuracy of these models was evaluated by using the full terms coefficient of determination (R2) and root mean square error (RMSE). The model that showcased the highest accuracy, utilizing the CatBoost algorithm in conjunction with a combination of vegetation indices, texture features, and LiDAR feature parameters, was selected for inverse estimation of LAI in breeding sunflowers and subsequent visualization. The findings demonstrated that this combined approach yielded the best model for LAI estimation across all three stages of sunflower growth, with coefficient of determination values of 0.93, 0.91 and 0.90, and root mean square error values of 0.13, 0.14 and 0.15, respectively. The research result can lay the groundwork for enhanced sunflower breeding and precise field management by leveraging advanced remote sensing and machine learning technologies.

    參考文獻
    相似文獻
    引證文獻
引用本文

于海琳,蘭玉彬,李京謙,楊蕾,崔文豪,趙軍勝,宮慧慧,趙靜.基于無人機遙感數(shù)據(jù)和機器學(xué)習(xí)的向日葵LAI反演[J].農(nóng)業(yè)機械學(xué)報,2025,56(1):356-365. YU Hailin, LAN Yubin, LI Jingqian, YANGA Lei, CUI Wenhao, ZHAO Junsheng, GONG Huihui, ZHAO Jing. Sunflower LAI Inversion Based on Unmanned Aerial Vehicle Remote Sensing Data and Machine Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(1):356-365.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-01-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-01-10
  • 出版日期:
文章二維碼