ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

融合無人機(jī)多時(shí)相參數(shù)的冬小麥單產(chǎn)估測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

江蘇省自然科學(xué)基金項(xiàng)目(BK20231004)和中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(KYCXJC2023007)


Yield Estimation of Winter Wheat Based on Multi-temporal Parameters by UAV Remote Sensing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為探討無人機(jī)遙感與多時(shí)相參數(shù)融合在冬小麥單產(chǎn)預(yù)測中的潛力,,采集了冬小麥7個(gè)生育期的無人機(jī)RGB和多光譜數(shù)據(jù),從中分別提取光譜參數(shù)和形態(tài)參數(shù),,采用5種機(jī)器學(xué)習(xí)算法建模,,比較不同生育期單產(chǎn)預(yù)測效果,在此基礎(chǔ)上,,篩選優(yōu)勢參數(shù)組合,,分別比較不同生育期及參數(shù)組合與單產(chǎn)預(yù)測之間的相關(guān)性。結(jié)果表明,,不同生育期及參數(shù)組合對冬小麥單產(chǎn)預(yù)測具有不同影響,;單生育期時(shí),灌漿期和開花期預(yù)測效果最佳,,其次為抽穗期,、孕穗期、成熟期、拔節(jié)期和分蘗期,;多生育期時(shí),,雙生育期、三生育期,、四生育期組合預(yù)測精度逐漸升高,,但考慮到增長幅度以及數(shù)據(jù)采集,、算力開銷,、處理成本等因素,“拔節(jié)期+抽穗期+灌漿期”的三生育期組合經(jīng)濟(jì)性最高,。5種機(jī)器學(xué)習(xí)算法整體預(yù)測精度從高到低分別為反向傳播神經(jīng)網(wǎng)絡(luò),、隨機(jī)森林、支持向量機(jī),、極端梯度提升和逐步多元回歸,,通過機(jī)器學(xué)習(xí)可解釋性方法SHAP優(yōu)選的光譜和形態(tài)參數(shù)組合雖然不同生育期有所不同,但除拔節(jié)期外,,均能提高單產(chǎn)預(yù)測精度,。研究結(jié)果可為冬小麥單產(chǎn)預(yù)測提供方法依據(jù)和技術(shù)參考。

    Abstract:

    To comprehensively assess the potential of integrating unmanned aerial vehicle (UAV) remote sensing and multi-temporal parameters fusion in predicting winter wheat yield in the past, the RGB and multi-spectral data from UAVs spanning seven critical growth stages of winter wheat were collected. From these data, spectral and morphological parameters were directly extracted. Five machine learning algorithms were then employed to compare and evaluate the yield prediction performance at each individual growth stage. Subsequently, an in-depth analysis was conducted, based on the identified optimal parameter combinations, to examine the relationships between various growth stages and the accuracy of yield predictions. The results revealed that both individual growth stages and their combinations significantly impacted the prediction of winter wheat yield. Among the single growth stages, the filling and flowering stages achieved the highest prediction accuracy, followed by the heading, booting, maturity, jointing, and tillering stages. When considering multiple growth stages, the prediction accuracy was progressively increased from dual-stage to tri-stage and quad-stage combinations. However, balancing the marginal gains in accuracy against factors such as data acquisition and processing costs, as well as computational resources, the tri-stage combination of “jointing + heading + filling” emerged as the most cost-effective solution. In terms of the five machine learning algorithms employed, the overall prediction accuracy ranked from the highest to the lowest was as follows: BPNN, RF, SVM, XGBoost, and SMR. Notably, while the optimal combinations of spectral and morphological parameters identified through the SHAP method varied across growth stages, they consistently enhanced the yield prediction accuracy for all stages excepted the jointing stage. The research result can provide valuable methodological insights and technical references for the precise prediction of winter wheat yield per unit area in the past.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

葛焱,朱志暢,臧晶榮,張睿男,金時(shí)超,徐煥良,翟肇裕.融合無人機(jī)多時(shí)相參數(shù)的冬小麥單產(chǎn)估測方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(1):344-355. GE Yan, ZHU Zhichang, ZANG Jingrong, ZHANG Ruinan, JIN Shichao, XU Huanliang, ZHAI Zhaoyu. Yield Estimation of Winter Wheat Based on Multi-temporal Parameters by UAV Remote Sensing[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(1):344-355.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-07-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-01-10
  • 出版日期:
文章二維碼