ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于RGB與深度圖像融合的生菜表型特征估算方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(61762013)、上海市農(nóng)業(yè)科技創(chuàng)新項(xiàng)目(2023-02-08-00-12-F04621)和農(nóng)業(yè)農(nóng)村部長三角智慧農(nóng)業(yè)技術(shù)重點(diǎn)實(shí)驗(yàn)室開放課題(KSAT-YRD2023011)


Lettuce Phenotype Estimation Using Integrated RGB-Depth Image Synergy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    采用自動(dòng)化手段對(duì)植物生長過程中的表型特征進(jìn)行精準(zhǔn)測(cè)量對(duì)于育種和栽培等應(yīng)用具有重要意義。本文圍繞工廠化生菜種植中的表型特征無損精準(zhǔn)檢測(cè)需求,通過融合深度相機(jī)采集的RGB圖像和深度圖像,利用改進(jìn)的DeepLabv3+模型進(jìn)行圖像分割,并通過雙模態(tài)回歸網(wǎng)絡(luò)對(duì)生菜表型特征進(jìn)行估算。本文改進(jìn)的分割模型的骨干網(wǎng)絡(luò)由Xception替換為MobileViTv2,以增強(qiáng)其全局感知能力和性能;在回歸網(wǎng)絡(luò)中,提出了卷積雙模態(tài)特征融合模塊CMMCM,用于估算生菜的表型特征。在包含4個(gè)生菜品種的公開數(shù)據(jù)集上的實(shí)驗(yàn)結(jié)果表明,本文方法可對(duì)鮮質(zhì)量、干質(zhì)量、冠幅、葉面積和株高共5種生菜表型特征進(jìn)行估算,決定系數(shù)分別達(dá)到0.922 2、0.931 4、0.862 0、0.935 9和 0.887 5。相較于未添加CMMCM和SE模塊的RGB和深度圖的表型參數(shù)估計(jì)基準(zhǔn)ResNet-10(雙模態(tài)),本文改進(jìn)的模型決定系數(shù)分別提高2.54%、2.54%、1.48%、2.99%和4.88%,單幅圖像檢測(cè)耗時(shí)為44.8 ms,說明該方法對(duì)于雙模態(tài)圖像融合的生菜表型特征無損提取具有較高的準(zhǔn)確性和實(shí)時(shí)性。

    Abstract:

    Accurate measurement of phenotypic traits in plant growth using automated methods is crucial for applications such as breeding and cultivation. Aiming to address the need for non-destructive, precise detection of phenotypic traits in factory-grown lettuce, by integrating RGB images and depth images collected by depth cameras, an improved DeepLabv3+ model was used for image segmentation, and a dual-modal regression network estimated the phenotypic traits of lettuce. The backbone of the improved segmentation model was replaced from Xception to MobileViTv2 to enhance its global perception capabilities and performance. In the regression network, a convolutional multi-modal feature fusion module (CMMCM) was proposed to estimate the phenotypic traits of lettuce. Experimental results on a public dataset containing four lettuce varieties showed that the method estimated five phenotypic traits—fresh weight, dry weight, canopy diameter, leaf area, and plant height—with determination coefficients of 0.922 2, 0.931 4, 0.862 0, 0.935 9, and 0.887 5, respectively. Compared with the RGB and depth image-based phenotypic parameter estimation benchmark ResNet-10 (Dual) without CMMCM and SE modules, the improved model increased the determination coefficients by 2.54%, 2.54%, 1.48%, 2.99%, and 4.88%, respectively, with an image detection time of 44.8 ms per image. This demonstrated that the method achieved high accuracy and real-time performance for non-destructive detection of lettuce phenotypic traits through dual-modal image fusion.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

陸聲鏈,李沂楊,李幗,賈小澤,鞠青青,錢婷婷.基于RGB與深度圖像融合的生菜表型特征估算方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(1):84-91,101. LU Shenglian, LI Yiyang, LI Guo, JIA Xiaoze, JU Qingqing, QIAN Tingting. Lettuce Phenotype Estimation Using Integrated RGB-Depth Image Synergy[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(1):84-91,101.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-10-31
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-01-10
  • 出版日期:
文章二維碼