ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于RGB與深度圖像融合的生菜表型特征估算方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(61762013),、上海市農業(yè)科技創(chuàng)新項目(2023-02-08-00-12-F04621)和農業(yè)農村部長三角智慧農業(yè)技術重點實驗室開放課題(KSAT-YRD2023011)


Lettuce Phenotype Estimation Using Integrated RGB-Depth Image Synergy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    采用自動化手段對植物生長過程中的表型特征進行精準測量對于育種和栽培等應用具有重要意義。本文圍繞工廠化生菜種植中的表型特征無損精準檢測需求,,通過融合深度相機采集的RGB圖像和深度圖像,,利用改進的DeepLabv3+模型進行圖像分割,并通過雙模態(tài)回歸網絡對生菜表型特征進行估算,。本文改進的分割模型的骨干網絡由Xception替換為MobileViTv2,,以增強其全局感知能力和性能;在回歸網絡中,,提出了卷積雙模態(tài)特征融合模塊CMMCM,,用于估算生菜的表型特征。在包含4個生菜品種的公開數據集上的實驗結果表明,,本文方法可對鮮質量,、干質量、冠幅,、葉面積和株高共5種生菜表型特征進行估算,,決定系數分別達到0.922 2、0.931 4,、0.862 0,、0.935 9和 0.887 5。相較于未添加CMMCM和SE模塊的RGB和深度圖的表型參數估計基準ResNet-10(雙模態(tài)),,本文改進的模型決定系數分別提高2.54%,、2.54%,、1.48%、2.99%和4.88%,,單幅圖像檢測耗時為44.8 ms,,說明該方法對于雙模態(tài)圖像融合的生菜表型特征無損提取具有較高的準確性和實時性。

    Abstract:

    Accurate measurement of phenotypic traits in plant growth using automated methods is crucial for applications such as breeding and cultivation. Aiming to address the need for non-destructive, precise detection of phenotypic traits in factory-grown lettuce, by integrating RGB images and depth images collected by depth cameras, an improved DeepLabv3+ model was used for image segmentation, and a dual-modal regression network estimated the phenotypic traits of lettuce. The backbone of the improved segmentation model was replaced from Xception to MobileViTv2 to enhance its global perception capabilities and performance. In the regression network, a convolutional multi-modal feature fusion module (CMMCM) was proposed to estimate the phenotypic traits of lettuce. Experimental results on a public dataset containing four lettuce varieties showed that the method estimated five phenotypic traits—fresh weight, dry weight, canopy diameter, leaf area, and plant height—with determination coefficients of 0.922 2, 0.931 4, 0.862 0, 0.935 9, and 0.887 5, respectively. Compared with the RGB and depth image-based phenotypic parameter estimation benchmark ResNet-10 (Dual) without CMMCM and SE modules, the improved model increased the determination coefficients by 2.54%, 2.54%, 1.48%, 2.99%, and 4.88%, respectively, with an image detection time of 44.8 ms per image. This demonstrated that the method achieved high accuracy and real-time performance for non-destructive detection of lettuce phenotypic traits through dual-modal image fusion.

    參考文獻
    相似文獻
    引證文獻
引用本文

陸聲鏈,李沂楊,李幗,賈小澤,鞠青青,錢婷婷.基于RGB與深度圖像融合的生菜表型特征估算方法[J].農業(yè)機械學報,2025,56(1):84-91,,101. LU Shenglian, LI Yiyang, LI Guo, JIA Xiaoze, JU Qingqing, QIAN Tingting. Lettuce Phenotype Estimation Using Integrated RGB-Depth Image Synergy[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(1):84-91,,101.

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-10-31
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-01-10
  • 出版日期:
文章二維碼