ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于多源數(shù)據(jù)與豐度信息融合的森林生物量估算研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(52472463)、國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD2001405)和機(jī)器人學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金項(xiàng)目(2024-001)


Forest Biomass Estimation Based on Multi-source Data and Abundance Information Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    森林是維持碳平衡的重要組成部分,,精確的森林生物量探測(cè)對(duì)環(huán)境改善和相關(guān)政策制定均有重要的推動(dòng)作用,。本文探索了將多源數(shù)據(jù)及豐度信息融合分析實(shí)現(xiàn)森林生物量反演,。首先,采用MOPSOSCD獲取研究區(qū)域的端元束,,并獲得每組樹(shù)木端元的豐度信息,,然后在Landsat 8 OLI及ASTGTM DEM中提取單波段因子、植被指數(shù),、地形因子,、紋理特征等46個(gè)指標(biāo),測(cè)試融合豐度前后模型擬合效果,。通過(guò)多元線(xiàn)性回歸和BP神經(jīng)網(wǎng)絡(luò)模型進(jìn)行生物量反演試驗(yàn)發(fā)現(xiàn),,采用多元線(xiàn)性回歸模型時(shí),,優(yōu)化前生物量均方根誤差(RMSE)和決定系數(shù)(R2)分別為41.09 mg/hm2、0.40,,優(yōu)化后最優(yōu)RMSE和R2分別為38.66 mg/hm2,、0.44。采用BP神經(jīng)網(wǎng)絡(luò)模型時(shí),,優(yōu)化前生物量RMSE和R2分別為32.73 mg/hm2,、0.56,最優(yōu)RMSE和R2分別為32.07 mg/hm2,、0.57,。添加豐度后BP神經(jīng)網(wǎng)絡(luò)模型具有最優(yōu)反演效果。通過(guò)試驗(yàn)驗(yàn)證了MOPSOSCD算法提取端元束對(duì)應(yīng)的豐度在提升模型生物量反演精度的有效性,。同時(shí),試驗(yàn)證明端元的提取精度越高,,對(duì)應(yīng)模型生物量反演效果越好,。

    Abstract:

    Forests are essential in maintaining carbon balance, and accurate detection of forest biomass plays a crucial role in promoting environmental improvement and related policy formulation. The comprehensive analysis of multi-source data and abundance information was explored to achieve forest biomass inversion. Firstly, MOPSOSCD was used to obtain the endmember bundle of the study area, and the abundance information of each group of tree endmembers was obtained. Totally 46 indicators, including single band factor, vegetation index, terrain factor, texture feature, etc., were extracted from Landsat 8 OLI and ASTGTM DEM to test the model fitting effect before and after fusion abundance through biomass inversion experiments using multiple linear regression and BP neural network models. It was found that when using the multiple linear regression model, among the seven optimized models extracted for abundance, two groups had better RMSE than the multiple linear regression model without added abundance, and seven groups had better R2 than the multiple linear regression model without added abundance. The RMSE and R2 before optimization were 41.09 mg/hm2 and 0.40, and the optimal RMSE and R2 were 38.66 mg/hm2 and 0.44, respectively. When using the BP neural network model, all BP models with added abundance showed an improvement in RMSE, with six groups having better R2 than those without added abundance. The RMSE and R2 before optimization were 32.73 mg/hm2 and 0.56, and the optimal RMSE and R2 were 32.07 mg/hm2 and 0.57, respectively. The BP neural network model with added abundance had the best inversion effect. The MOPSOCCD algorithm was used to extract the abundance corresponding to the endmember bundle, and abundance was used as the inversion factor for biomass inversion. The experiment demonstrated the effectiveness of abundance in improving biomass inversion accuracy. Meanwhile, the higher the accuracy of extracting endmembers was, the better the corresponding model biomass inversion effect was.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

林潔雯,陳建.基于多源數(shù)據(jù)與豐度信息融合的森林生物量估算研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(1):65-73. LIN Jiewen, CHEN Jian. Forest Biomass Estimation Based on Multi-source Data and Abundance Information Fusion[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(1):65-73.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-11-01
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2025-01-10
  • 出版日期:
文章二維碼