ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于彩色與熱紅外圖像信息融合的肉雞死雞識別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

科技創(chuàng)新2030—“新一代人工智能”重大項目(2021ZD0113804-3)


Detection of Dead Broilers Based on Fusion of Color and Thermal Infrared Image Information
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了提高規(guī)?;怆u養(yǎng)殖場中肉雞死雞識別的精度,基于彩色圖像和熱紅外圖像,,分別提出了基于兩階段與單階段的肉雞死雞檢測方法,。在兩階段方法中,首先使用YOLO v11-seg網絡對彩色圖像中肉雞進行分割,,獲取肉雞掩膜坐標,;然后提取單只肉雞熱紅外圖像,使用YOLO v8-cls分類網絡對單只肉雞熱紅外圖像進行分類,。在單階段方法中,,基于彩色圖像和配準熱紅外圖像分別構建了G通道替換融合圖像、加權融合圖像,、小波變換融合圖像以及頻域變換融合圖像,,使用多源融合圖像數據集基于YOLO v11s目標檢測網絡構建了肉雞死雞檢測模型,。結果表明,兩階段肉雞死雞檢測方法中,,肉雞實例分割平均精確率為94.2%,,單只肉雞熱紅外圖像分類準確率為99.4%。單階段肉雞死雞檢測方法中,,基于小波變換融合圖像構建的肉雞死雞檢測模型獲得了最高的檢測精度,,檢測平均精確率為93.0%。兩種方法相比,,單階段檢測方法在公共測試集上精確率更高,,為92.3%,推理速度更快(6.1 ms/f),,單模型部署更加簡單,。對肉雞熱紅外圖像溫度分布分析表明,低周齡肉雞與高周齡肉雞的體表溫度分布具有明顯差異,。提出的肉雞死雞檢測方法,,能夠在高密度養(yǎng)殖下的惡劣成像環(huán)境中對肉雞死雞實現準確識別,為其他畜禽死亡檢測提供了技術參考,。

    Abstract:

    In order to improve the accuracy of dead broiler detection in large-scale broiler farms, based on color images and thermal infrared images, two-stage and one-stage dead broiler detection methods for broilers were proposed, respectively. In the two-stage method, the YOLO v11-seg network was firstly used to segment broilers in color images to obtain broiler mask coordinates; then individual broiler thermal infrared images were extracted and classified by using the YOLO v8-cls classification network. In the one-stage method, G-channel replacement fusion images, weighted fusion images, wavelet transform fusion images, and frequency domain transform fusion images were constructed based on color images and registered thermal infrared images. Multi-source fusion image datasets were used to build a dead broiler detection model based on the YOLO v11s object detection network. The results showed that in the two-stage dead broiler detection method, the mAP of broiler instance segmentation was 94.2%, and the classification accuracy of individual broiler thermal infrared images was 99.4%. In the one-stage dead broiler detection method, the model built based on wavelet transform fusion images achieved the highest detection accuracy, with mAP of 93.0%. Compared with the two-stage method, the one-stage detection method had a higher precision rate of 92.3% on the public test set, faster inference speed (6.1 ms/f), and easier to be deployed. Analysis of the temperature distribution of individual broiler thermal infrared images indicated that there were significant differences in body surface temperature distribution between low-age and high-age broilers. The dead broiler detection method proposed can accurately identify dead broilers in the harsh imaging environment under high-density breeding, and it can provide a technical reference for the death detection of other livestock and poultry.

    參考文獻
    相似文獻
    引證文獻
引用本文

郝宏運,姜偉,羅升,孫憲法,王糧局,王紅英.基于彩色與熱紅外圖像信息融合的肉雞死雞識別方法[J].農業(yè)機械學報,2025,56(1):47-55,,64. HAO Hongyun, JIANG Wei, LUO Sheng, SUN Xianfa, WANG Liangju, WANG Hongying. Detection of Dead Broilers Based on Fusion of Color and Thermal Infrared Image Information[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(1):47-55,64.

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-10-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-01-10
  • 出版日期:
文章二維碼