ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于多源圖像和環(huán)境信息融合的規(guī)模化養(yǎng)殖蛋雞體溫測量方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

科技創(chuàng)新2030—“新一代人工智能”重大項(xiàng)目(2021ZD0113804-3)


Temperature Measurement Method for Commercially Farmed Layer Hens Based on Multi-source Image and Environmental Data Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    規(guī)?;半u養(yǎng)殖一直以來都面臨著蛋雞健康狀態(tài)不易評估,、疫病無法有效預(yù)防等問題,雞群健康監(jiān)測對于蛋雞養(yǎng)殖業(yè)的意義日漸顯著,。蛋雞作為恒溫動(dòng)物,,其體溫是評估健康狀態(tài)的重要指標(biāo)。本研究以疊層籠養(yǎng)蛋雞為研究對象,,提出了一種融合多源信息的蛋雞體溫測量方法,。首先對熱紅外相機(jī)進(jìn)行溫度漂移校正和距離校正,以提高相機(jī)的測量精度,。將熱紅外圖像與采集的近紅外圖像和深度圖像進(jìn)行像素級配準(zhǔn),,使用YOLO v8n目標(biāo)檢測網(wǎng)絡(luò)對融合的多源圖像進(jìn)行蛋雞頭部檢測,,檢測結(jié)果AP50為97.0%,AP50-95為76.1%,。然后根據(jù)環(huán)境溫度和蛋雞頭部距離信息對蛋雞頭部熱紅外圖像進(jìn)行溫度漂移校正和距離校正,,提取校正后圖像的溫度特征點(diǎn)計(jì)算蛋雞頭部溫度?;诃h(huán)境溫度,、環(huán)境相對濕度、環(huán)境風(fēng)速,、光照強(qiáng)度和蛋雞頭部溫度構(gòu)建了蛋雞體溫預(yù)測數(shù)據(jù)集,,利用機(jī)器學(xué)習(xí)算法預(yù)測蛋雞體溫。其中隨機(jī)森林算法在蛋雞體溫預(yù)測中表現(xiàn)最好,,R2為0.696,,RMSE為0.246℃。本研究為實(shí)現(xiàn)準(zhǔn)確,、無擾動(dòng)地測量規(guī)?;半u養(yǎng)殖場的雞只體溫提供了參考。

    Abstract:

    Large-scale egg farming faces challenges in assessing the health status of laying hens and preventing disease outbreaks. The need for effective flock health monitoring in egg production is becoming increasingly important. As homeothermic animals, the body temperature of laying hens serves as a crucial indicator of their health. A method for measuring the body temperature of stacked cage laying hens was proposed by integrating multi-source information. To improve measurement accuracy, temperature drift correction and distance correction were applied to the thermal infrared camera. The thermal infrared images were then pixel-level aligned with the acquired near-infrared and depth images. These fused multi-source images were used to detect the heads of the laying hens through the YOLO v8n detection network, achieving detection results of 97.0% for AP50 and 76.1% for AP50-95. Temperature drift and distance corrections were performed on the thermal infrared images of the hens’ heads, using ambient temperature and distance information. Temperature feature points were then extracted from the corrected images to calculate the head temperature of the laying hens. A prediction dataset was constructed based on environmental factors such as ambient temperature, humidity, wind speed, light intensity, and the hens’ head temperature. Various machine learning algorithms were used to predict the body temperature, with the random forest algorithm showing the best performance, achieving an R2 of 0.696 and an RMSE of 0.246℃. The research result can provide a reference for achieving accurate, high-throughput, and non-invasive measurement of body temperature in large-scale egg farms.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

宋道一,羅升,朱玉華,童勤,王紅英,王糧局.基于多源圖像和環(huán)境信息融合的規(guī)?;B(yǎng)殖蛋雞體溫測量方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(1):37-46. SONG Daoyi, LUO Sheng, ZHU Yuhua, TONG Qin, WANG Hongying, WANG Liangju. Temperature Measurement Method for Commercially Farmed Layer Hens Based on Multi-source Image and Environmental Data Fusion[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(1):37-46.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-10-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-01-10
  • 出版日期:
文章二維碼