ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于音視頻信息融合與Self-Attention-DSC-CNN6網(wǎng)絡(luò)的鱸魚攝食強(qiáng)度分類方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD2001703)


Classification Method of Feeding Intensity of Sea Bass Based on Self-Attention-DSC-CNN6 and Multi-modal Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    攝食強(qiáng)度識(shí)別分類是實(shí)現(xiàn)水產(chǎn)養(yǎng)殖精準(zhǔn)投喂的重要環(huán)節(jié)?,F(xiàn)有的投喂方式存在過度依賴人工經(jīng)驗(yàn)判斷,、投喂量不精確,、飼料浪費(fèi)嚴(yán)重等問題,?;诙嗄B(tài)融合的魚類攝食程度分類能夠綜合不同類型的數(shù)據(jù)(如:視頻、聲音和水質(zhì)參數(shù)),,為魚群的投喂提供更加全面精準(zhǔn)的決策依據(jù)。因此,提出了一種融合視頻和音頻數(shù)據(jù)的多模態(tài)融合框架,,旨在提升鱸魚攝食強(qiáng)度分類性能,。將預(yù)處理后的Mel頻譜圖(Mel Spectrogram)和視頻幀圖像分別輸入到Self-Attention-DSC-CNN6(Self-attention-depthwise separable convolution-CNN6)優(yōu)化模型進(jìn)行高層次的特征提取,并將提取的特征進(jìn)一步拼接融合,,最后將拼接后的特征經(jīng)分類器分類,。針對Self-Attention-DSC-CNN6優(yōu)化模型,基于CNN6算法進(jìn)行了改進(jìn),,將傳統(tǒng)卷積層替換為深度可分離卷積(Depthwise separable convolution,,DSC)來達(dá)到減少計(jì)算復(fù)雜度的效果,并引入Self-Attention注意力機(jī)制以增強(qiáng)特征提取能力,。實(shí)驗(yàn)結(jié)果顯示,,本文所提出的多模態(tài)融合框架鱸魚攝食強(qiáng)度分類準(zhǔn)確率達(dá)到90.24%,模型可以有效利用不同數(shù)據(jù)源信息,,提升了對復(fù)雜環(huán)境中魚群行為的理解,,增強(qiáng)了模型決策能力,確保了投喂策略的及時(shí)性與準(zhǔn)確性,,從而有效減少了飼料浪費(fèi),。

    Abstract:

    Feeding intensity recognition and classification is an important link to realize accurate feeding in aquaculture. Existing feeding methods have problems such as over-reliance on manual experience judgment, imprecise feeding amount, and serious feed waste. Fish feeding degree classification based on multi-modal fusion can synthesize different types of data (e.g., video, sound, and water quality parameters) to provide a more comprehensive and accurate decision basis for fish feeding. Therefore, a multi-modal fusion framework that integrated video and audio data was proposed with the aim of improving the performance of sea bass feeding intensity classification. The preprocessed Mel Spectrogram (Mel) and video frame images were input into the self-attention-depthwise separable convolution-CNN6 (Self-Attention-DSC-CNN6) optimization model for high-level feature extraction, respectively, and the extracted features were further spliced and fused, and finally the spliced features were classified by a classifier. The Self-Attention-DSC-CNN6 optimization model was improved based on the CNN6 algorithm by replacing the traditional convolutional layers with depthwise separable convolution (DSC) to reduce the computational complexity, and the Self-Attention mechanism was introduced to enhance the feature extraction capability. The experimental results showed that the multi-modal fusion framework proposed achieved an accuracy of 90.24% in sea bass feeding intensity classification, and the model can effectively utilize the information from different data sources to improve the understanding of fish behavior in complex environments, enhance the decision-making ability of the model, and ensure the timeliness and accuracy of the feeding strategy, thus effectively reducing the waste of feed. This not only provided strong technical support for the intelligent management of aquaculture, but also laid the foundation for the development of intelligent feeding system.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李道亮,李萬超,杜壯壯.基于音視頻信息融合與Self-Attention-DSC-CNN6網(wǎng)絡(luò)的鱸魚攝食強(qiáng)度分類方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(1):16-24. LI Daoliang, LI Wanchao, DU Zhuangzhuang. Classification Method of Feeding Intensity of Sea Bass Based on Self-Attention-DSC-CNN6 and Multi-modal Fusion[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(1):16-24.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-11-25
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-01-10
  • 出版日期:
文章二維碼