ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

農(nóng)業(yè)領(lǐng)域多模態(tài)融合技術(shù)方法與應(yīng)用研究進(jìn)展
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(32373186)


Advances in Multi-modal Fusion Techniques and Applications in Agricultural Field
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    多模態(tài)融合技術(shù)通過(guò)結(jié)合多源數(shù)據(jù),,可以克服單一模態(tài)的局限性,。近年來(lái),傳感器以及遙感技術(shù)的發(fā)展為作物監(jiān)測(cè)提供了更加豐富的數(shù)據(jù)源,,光譜數(shù)據(jù),、圖像數(shù)據(jù)、雷達(dá)數(shù)據(jù)以及熱紅外數(shù)據(jù)被廣泛應(yīng)用于作物監(jiān)測(cè)中,。通過(guò)利用計(jì)算機(jī)視覺(jué)技術(shù)以及數(shù)據(jù)分析方法,,可以從中獲取作物的表型參數(shù)、理化特征等信息,,從而有助于評(píng)估作物的生長(zhǎng)狀況,、指導(dǎo)農(nóng)業(yè)生產(chǎn)管理。現(xiàn)有研究多數(shù)是基于單一模態(tài)數(shù)據(jù)展開(kāi),,而單一模態(tài)的數(shù)據(jù)僅有一種類型的輸入,,缺乏對(duì)整體信息的理解,且容易受到單模態(tài)噪聲的影響,;部分研究雖然采用了多模態(tài)融合技術(shù),,但仍未能充分考慮模態(tài)間的復(fù)雜交互關(guān)系。為了深入分析多模態(tài)融合技術(shù)在農(nóng)業(yè)領(lǐng)域應(yīng)用的潛力,,本文首先闡述了農(nóng)業(yè)領(lǐng)域中多模態(tài)融合的先進(jìn)技術(shù)與方法,,重點(diǎn)梳理了多模態(tài)融合技術(shù)在作物識(shí)別、性狀分析,、產(chǎn)量預(yù)測(cè),、脅迫分析及病蟲(chóng)害診斷領(lǐng)域中的應(yīng)用研究成果,分析了多模態(tài)融合技術(shù)在農(nóng)業(yè)領(lǐng)域中存在的數(shù)據(jù)利用程度低,、有效特征提取難,、融合方式單一等問(wèn)題,并對(duì)未來(lái)發(fā)展提出展望,,以期通過(guò)多模態(tài)融合的方法推動(dòng)農(nóng)業(yè)精準(zhǔn)管理,、提高生產(chǎn)效率。

    Abstract:

    Multi-modal fusion technology, by combining data from multiple sources, has been widely applied in fields such as medicine, autonomous driving, and emotion recognition to overcome the limitations of a single modality. In recent years, advancements in sensor and remote sensing technologies have provided richer data sources for crop monitoring, including spectral data, image data, radar data, and thermal infrared data. By utilizing computer vision and data analysis methods, information such as phenotypic parameters and physicochemical characteristics of crops can be obtained, helping to assess crop growth and guide agricultural production management. Most existing studies were based on single-modal data, which involved only one type of input and lacked an understanding of the overall information, making them susceptible to noise from a single modality. Although some studies employed multi-modal fusion technology, they still did not fully consider the complex interactions between modalities. To thoroughly analyze the potential of multi-modal fusion technology in crop monitoring, the advanced technologies and methods of multi-modal fusion in the agricultural field were firstly outlined, with a focus on its application in crop identification, trait analysis, yield prediction, stress analysis, and pest and disease diagnosis. The existing challenges were also discussed and an outlook on future developments was provided, aiming to promote precision agriculture management and improve production efficiency through multi-modal fusion methods.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李道亮,趙曄,杜壯壯.農(nóng)業(yè)領(lǐng)域多模態(tài)融合技術(shù)方法與應(yīng)用研究進(jìn)展[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(1):1-15. LI Daoliang, ZHAO Ye, DU Zhuangzhuang. Advances in Multi-modal Fusion Techniques and Applications in Agricultural Field[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(1):1-15.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-08-09
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-01-10
  • 出版日期:
文章二維碼