ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

面向炭化產(chǎn)線的秸稈原料成分檢測模塊設(shè)計
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點(diǎn)研發(fā)計劃項目(2022YFD2002101)


Design of Straw Raw Material Component Detection Module for Carbonization Production Line
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    秸稈作為我國最主要的農(nóng)林廢棄物,,是制備生物炭的主要原料,秸稈原料的固定碳,、揮發(fā)分,、灰分含量是影響成炭品質(zhì)的關(guān)鍵指標(biāo),也是炭化熱解工藝參數(shù)的調(diào)控依據(jù),。針對當(dāng)前秸稈炭化產(chǎn)線上對秸稈固定碳,、揮發(fā)分、灰分成分含量的快速檢測需求,,設(shè)計了一種秸稈原料成分檢測模塊,。首先基于近紅外光譜技術(shù)開展秸稈炭化成分檢測方法的研究,,基于在線檢測需求選擇便攜式光譜傳感器并設(shè)計漫反射檢測光路,搭建面向產(chǎn)線的光譜采集單元,,采集粗切秸稈在1100~2500 nm范圍內(nèi)的漫反射光譜,,結(jié)合Savitzky-Golay卷積平滑 (SG)、多元散射校正(MSC),、標(biāo)準(zhǔn)正態(tài)變換(SNV)預(yù)處理方法和偏最小二乘法(PLS),,分別建立了基于全波長和基于競爭性自適應(yīng)重加權(quán)法(CARS)篩選的特征波長的秸稈固定碳、揮發(fā)分,、灰分含量預(yù)測模型,,結(jié)果表明特征波長的建模效果優(yōu)于全波長,對固定碳,、揮發(fā)分,、灰分質(zhì)量分?jǐn)?shù)預(yù)測的最優(yōu)模型分別為SG+MSC-CARS-PLS、SG-CARS-PLS,、SG+MSC-CARS-PLS,,測試集決定系數(shù)R2分別為0.891 6、0.931 7,、0.929 7,,預(yù)測集均方根誤差分別為1.46%、1.39%,、0.42%,,相對分析誤差分別為2.54、3.44,、3.18,,能夠?qū)崿F(xiàn)精確預(yù)測。然后進(jìn)行秸稈成分在線檢測模塊設(shè)計,,模塊分為光譜采集單元,、供電單元、控制與傳輸單元,,嵌入已構(gòu)建的秸稈成分預(yù)測模型,,基于Raspberry Pi 4B開發(fā)板和其自帶的Wi-Fi模塊實(shí)現(xiàn)秸稈在線光譜采集、模型計算,、數(shù)據(jù)傳輸?shù)裙δ?,通過樣機(jī)試驗證明該模塊設(shè)計及開窗位置選擇可以采集滿足在線分析要求的近紅外光譜曲線,同時采用斜率/截距校正的方法,,將實(shí)驗室模型轉(zhuǎn)移到產(chǎn)線進(jìn)行在線應(yīng)用,,固定碳、揮發(fā)分,、灰分含量預(yù)測精度均得到提升,,可以達(dá)到在線分析需求,,為熱解工藝參數(shù)的調(diào)控提供數(shù)據(jù)支撐。

    Abstract:

    Straw, as the primary agricultural waste in China, is the main material for biochar production. The fixed carbon, volatile matter, and ash content are key indicators that influence biochar quality and guide the parameters of pyrolysis processes. Aiming to address the need for rapid detection of these indicators in straw carbonization production lines by designing a straw composition detection module. Utilizing near-infrared spectroscopy, a method for detecting straw components was developed. A portable spectral sensor was selected and a diffuse reflectance detection path was designed. A spectral collection unit was established to capture spectra of coarse-cut straw in the 1100~2500 nm range. By applying Savitzky-Golay convolution smoothing(SG), multiple scattering correction (MSC), standard normal variate (SNV) preprocessing, and partial least squares regression (PLS), quantitative prediction models were developed for fixed carbon, volatile matter,,and ash content by using full wavelengths and feature wavelengths selected by competitive adaptive reweighted sampling (CARS). Results indicated that models based on feature wavelengths outperformed those using full wavelengths. The optimal models for fixed carbon, volatile matter, and ash content were SG+MSC-CARS-PLS, SG-CARS-PLS, and SG+MSC-CARS-PLS, with prediction set correlation coefficients R2 of 0.891 6,,0.931 7, and 0.929 7, respectively. The root mean square errors of prediction set (RMSEp) were 1.46%,1.39%, and 0.42%, yielding relative prediction deviations (RPD) of 2.54, 3.44, and 3.18, demonstrating accurate prediction capabilities. Furthermore, an online detection module for straw composition was designed. The module was divided into three units: the spectroscopic acquisition unit, the power supply unit, and the control and transmission unit. The pre-built model for predicting straw composition was embedded in the module. Based on the Raspberry Pi 4B development board and its built-in Wi-Fi module, it enabled functions such as online spectroscopic acquisition, model computation, and data transmission for straw. Through prototype testing, it was demonstrated that the module design and window location selection could capture near-infrared spectroscopic curves that met the requirements for online analysis. By using the slope/intercept calibration method, the laboratory model was transferred to the production line for online application. The prediction accuracy of fixed carbon,,volatile matter, and ash content was improved, fulfilling the requirements for online analysis and providing data support for the regulation of pyrolysis process parameters.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

潘宇軒,李福朋,姜含露,朱志強(qiáng),呂程序,吳金燦,周海燕.面向炭化產(chǎn)線的秸稈原料成分檢測模塊設(shè)計[J].農(nóng)業(yè)機(jī)械學(xué)報,2024,55(s2):310-318. PAN Yuxuan, LI Fupeng, IANG Hanlu, ZHU Zhiqiang, Lü Chengxu, WU Jincan, ZHOU Haiyan. Design of Straw Raw Material Component Detection Module for Carbonization Production Line[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(s2):310-318.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-08-03
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-12-10
  • 出版日期:
文章二維碼