ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于PSO-Stacking的河蟹投餌量預(yù)測模型
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2020YFD0900201)


Prediction Model for Feeding Amount of River Crab Based on PSO-Stacking
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    河蟹作為我國重要的水產(chǎn)養(yǎng)殖物種之一,,深受消費(fèi)者喜愛,在河蟹養(yǎng)殖過程中,,科學(xué)的投餌量是保證河蟹健康生長及提高養(yǎng)殖效益的關(guān)鍵因素,。本文通過綜合分析影響河蟹養(yǎng)殖投餌量的多種因素,采用集成學(xué)習(xí)算法建立河蟹養(yǎng)殖投餌量預(yù)測模型,。搭建數(shù)據(jù)采集系統(tǒng),,采集包括河蟹生物量,、河蟹數(shù)量、性別比例,、水體pH值,、溫度、溶解氧含量以及河蟹攝食量等關(guān)鍵參數(shù)數(shù)據(jù),,建立投餌量數(shù)據(jù)集;運(yùn)用數(shù)據(jù)預(yù)處理技術(shù)對數(shù)據(jù)集進(jìn)行平滑處理以及歸一化,,減少異常值對預(yù)測結(jié)果的干擾,同時(shí)消除特征數(shù)據(jù)不同量綱的影響;引入粒子群優(yōu)化算法改進(jìn)集成學(xué)習(xí),,建立了河蟹養(yǎng)殖投餌量預(yù)測模型,,實(shí)現(xiàn)河蟹養(yǎng)殖投餌量的準(zhǔn)確預(yù)測。實(shí)際應(yīng)用測試結(jié)果表明本文模型平均絕對誤差為0.34971 g,,均方根誤差為0.49114 g,,決定系數(shù)達(dá)0.903 58。

    Abstract:

    As one of the important aquaculture species in China, river crabs are well-loved by consumers.In the process of river crab aquaculture, scientific baiting is a key factor to ensure the healthy growth of river crabs and improve aquaculture efficiency. By comprehensively analyzing the factors affecting the baiting amount of river crab aquaculture, an ensemble learning algorithm was used to establish a prediction model for the baiting amount of river crab aquaculture. A data collection system was set up to collect key parameters such as river crab biomass, crab population, sex ratio, water pH value, temperature, dissolved oxygen, and crab feeding amounts to establish a baiting data set;data preprocessing techniques were used to smooth and normalize the data set to reduce the interference of outliers on the prediction results, and at the same time to eliminate the influence of different scales of the characteristic data;the particle swarm optimization (PSO) algorithm was introduced to improve the ensemble learning and establish a baiting model for river crab culture. The particle swarm optimization algorithm was introduced to improve the ensemble learning, and the bait quantity prediction model was established to realize the accurate prediction of the bait quantity of river crab aquaculture. The results of practical application tests showed that the average absolute error (MAE) of this model was 0.349 71 g, the root mean square error (RMSE)was 0.491 14 g, and the coefficient of determination (R2) of key performance reached 0.903 58.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李家弟,陳子瑜,高晨,孫龍清.基于PSO-Stacking的河蟹投餌量預(yù)測模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(s2):303-309,,379. LI Jiadi, CHEN Ziyu, GAO Chen, SUN Longqing. Prediction Model for Feeding Amount of River Crab Based on PSO-Stacking[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(s2):303-309,,379.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-07-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-12-10
  • 出版日期:
文章二維碼