ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于CNN-LSTM的蘋果樹(shù)種植區(qū)域提取
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金面上項(xiàng)目(32471993)


Apple Planting Area Extraction Based on Improved CNN-LSTM Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    蘋果樹(shù)種植區(qū)域提取有利于農(nóng)業(yè)資源高效管理,。為解決蘋果種植區(qū)域提取中存在的分類精度不高、時(shí)效性滯后等問(wèn)題,,提出一種基于Sentinel-2和MODIS融合影像的卷積神經(jīng)網(wǎng)絡(luò)-長(zhǎng)短期記憶網(wǎng)絡(luò) (CNN?LSTM) 時(shí)序分類模型,。首先采用ESTARFM 時(shí)空融合算法構(gòu)建融合影像,對(duì)不同衛(wèi)星影像在空間和時(shí)間監(jiān)測(cè)能力優(yōu)勢(shì)和缺陷進(jìn)行互補(bǔ),,得到高空間和高時(shí)間分辨率共存的影像數(shù)據(jù),。在特征選擇方面,通過(guò)隨機(jī)森林模型進(jìn)行重要性分析并結(jié)合后向特征消除法從25個(gè)原始特征中選15個(gè)關(guān)鍵特征變量作為最優(yōu)特征組合,。分類模型方面,,卷積神經(jīng)網(wǎng)絡(luò)(Convolutional neural network, CNN)可以很好地在空間域、光譜域提取有效特征。長(zhǎng)短期記憶網(wǎng)絡(luò)(Long short-term memory, LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent neural network, RNN)的改進(jìn),,可以處理不等長(zhǎng)的輸入序列,。二者結(jié)合能夠提取“時(shí)空譜”有效特征,實(shí)現(xiàn)更精準(zhǔn)的圖像分類和遙感數(shù)據(jù)分析,。以煙臺(tái)市牟平區(qū)觀水鎮(zhèn)為研究區(qū),,利用時(shí)空融合彌補(bǔ)原始 Sentinel-2的影像缺失,,使用 CNN?LSTM模型進(jìn)行蘋果樹(shù)種植區(qū)域提取,,并與常用的機(jī)器學(xué)習(xí)分類算法進(jìn)行對(duì)比,進(jìn)而確定最優(yōu)分類模型,。研究表明在蘋果種植區(qū)域提取方面 CNN?LSTM 模型總體精度為 97.98%,,Kappa 系數(shù)為 0.958 6,總體精度對(duì)比其他 4 種機(jī)器學(xué)習(xí)算法 CART,、SVM,、RF、GBDT分別高15.43,、5.25,、4.00、3.31個(gè)百分點(diǎn),,與LSTM模型總體精度和Kappa系數(shù)相比分別提高2.11個(gè)百分點(diǎn)和0.0148,。所提出的蘋果樹(shù)種植區(qū)域精準(zhǔn)遙感提取方法可為制定科學(xué)合理的農(nóng)業(yè)管理措施提供有力支持。

    Abstract:

    The efficient management of agricultural resources can be significantly improved through the accurate extraction of apple cultivation areas. In order to solve the problems of poor classification accuracy and time lag in apple planting area extraction, a CNN?LSTM temporal classification model was proposed based on Sentinel-2 and MODIS fusion images. The ESTARFM spatio-temporal fusion algorithm was firstly used to construct the fusion image, which complemented the strengths and weaknesses of different satellite images in spatial and temporal monitoring capabilities, and obtained image data with high spatial and temporal resolution. The random forest model was utilized to select the most optimal feature combinations from the initial 25 features, narrowed down to 15 key variables using backward feature elimination. In terms of classification models, convolutional neural networks(CNN)can well extract effective features in the spatial and spectral domains. As an improvement of recurrent neural network, long short-term memory network (LSTM) can handle unequal input sequences. The combination of the two networks proposed can extract effective features in the spatial, temporal and spectral domains to achieve more accurate image classification and remote sensing data analysis. Taking Guanshui Town, Muping District, Yantai City as the study area, the spatio-temporal fusion algorithm was utilized to compensate for the lack of images from a single Sentinel-2, and the CNN?LSTM model was used for apple tree planting area extraction. The CNN?LSTM model achieved an overall accuracy of 97.98% and a Kappa coefficient of 0.9586, outperforming the other four machine learning algorithms by 15.43 percentage points,,5.25 percentage points,,4.00 percentage points, and 3.31 percentage points,respectively. The overall accuracy and Kappa coefficient of the CNN?LSTM model were improved by 2.11 percentage points and 0.0148, respectively, compared with that of the LSTM model. The precise remote sensing extraction method for apple tree planting areas proposed can provide strong support for the development of scientific and rational agricultural management.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王子航,常晗,張瑤,郭樹(shù)欣,張海洋.基于CNN-LSTM的蘋果樹(shù)種植區(qū)域提取[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(s2):277-285. WANG Zihang, CHANG Han, ZHANG Yao, GUO Shuxin, ZHANG Haiyang. Apple Planting Area Extraction Based on Improved CNN-LSTM Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(s2):277-285.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-07-16
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-12-10
  • 出版日期:
文章二維碼