ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于EDH-YOLO的輕量型溫室番茄檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

北京高校重點研究培育項目(2021YJPY201)


Lightweight Greenhouse Tomato Detection Method Based on EDH?YOLO
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對番茄采摘機器人識別算法包含復(fù)雜的網(wǎng)絡(luò)結(jié)構(gòu)和龐大的參數(shù)體量,,嚴(yán)重限制檢測模型的響應(yīng)速度問題,,本文提出一種改進(jìn)的輕量級YOLO v5 (EDH-YOLO) 算法。為了能夠在保持較高識別精度的同時大幅降低計算復(fù)雜度和模型內(nèi)存占用量,,引入EfficientNet-B0的輕量級網(wǎng)絡(luò)作為YOLO v5算法的骨干網(wǎng)絡(luò);為了在訓(xùn)練過程中更好地定位目標(biāo)物體的同時提高檢測算法精度,,引入DIoU損失函數(shù);為了降低模型計算復(fù)雜度和提高模型表達(dá)能力,引入一種輕量化的Hardswish激活函數(shù),。實驗結(jié)果顯示,,EDH-YOLO模型在識別效果損失較小的情況下,精確率,、召回率和平均精度均值分別為95.9%,、93.1%和96.8%,模型內(nèi)存占用量僅為7.3 MB,,檢測速度為53.2 f/s,,對比YOLO v5原模型內(nèi)存占用量降低55.3%,,EDH-YOLO模型檢測速度提升60.0%,。對比Faster R-CNN、YOLO v7和YOLO v8,,EDH-YOLO模型在不同光照和遮擋等情況下具有較高魯棒性,。同時,將EDH-YOLO模型通過模型轉(zhuǎn)換部署到安卓(Android)平臺中,,優(yōu)化模型推理過程,,滿足溫室復(fù)雜環(huán)境下番茄目標(biāo)果實實時識別需求,可為設(shè)施環(huán)境下基于移動邊緣計算的機器人目標(biāo)識別及自動采收作業(yè)提供技術(shù)支持。

    Abstract:

    Considering the issue that the tomato-picking robot’s recognition algorithm has a complex network structure and a large number of parameters, which severely limit the detection model’s response speed, an improved lightweight YOLO v5(EDH ? YOLO) algorithm was proposed. To significantly reduce computational complexity and model size while maintaining high recognition accuracy, the lightweight EfficientNet?B0 network was introduced as the backbone of the YOLO v5 algorithm. To better locate target objects during training and improve detection accuracy, the DIoU loss function was introduced. To reduce the model’s computational complexity and enhance its expressive ability, the lightweight Hardswish activation function was introduced. Experimental results indicated that the EDH?YOLO model achieved accuracy, recall, and average precision of 95.9%,,93.1%, and 96.8%,,respectively, with minimal loss in recognition performance. The size of model was only 7.3 MB, and the detection speed reached 53.2 f/s. Compared with the original YOLO v5 model, the model size was reduced by 55.3%, and the detection speed of the EDH ? YOLO model was increased by 60.0%.Compared with Faster R?CNN, YOLO v7, and YOLO v8, the EDH?YOLO model demonstrated higher robustness under various lighting and occlusion conditions. Additionally, the EDH ?YOLO model was deployed on the Android platform through model conversion to optimize the inference process, meet real-time recognition requirements for tomato fruits in complex greenhouse environments, and provide technical support for robot target recognition and automatic harvesting operations based on mobile edge computing in facility environments.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

畢澤洋,楊立偉,呂樹盛,宮艷晶,張俊寧,趙禮豪.基于EDH-YOLO的輕量型溫室番茄檢測方法[J].農(nóng)業(yè)機械學(xué)報,2024,55(s2):246-254. BI Zeyang, YANG Liwei, Lü Shusheng, GONG Yanjing, ZHANG Junning, ZHAO Lihao. Lightweight Greenhouse Tomato Detection Method Based on EDH?YOLO[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(s2):246-254.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-07-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-12-10
  • 出版日期:
文章二維碼