ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于視覺(jué)識(shí)別的玉米病蟲(chóng)害檢測(cè)與精準(zhǔn)變量噴藥系統(tǒng)研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(52265033、51865022)和云南省自然科學(xué)基金項(xiàng)目(202401AS070115)


Maize Pest and Disease Detection and Precise Variable Spraying System Based on Visual Recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)傳統(tǒng)無(wú)差別連續(xù)式噴藥存在農(nóng)藥浪費(fèi)、噴施低效的問(wèn)題,以玉米為研究對(duì)象,設(shè)計(jì)一套基于視覺(jué)識(shí)別的病蟲(chóng)害檢測(cè)及精準(zhǔn)變量噴藥系統(tǒng)。結(jié)合圖像處理和機(jī)器視覺(jué)技術(shù),對(duì)玉米田間病蟲(chóng)害自動(dòng)、快速和準(zhǔn)確識(shí)別,并根據(jù)識(shí)別的病蟲(chóng)害種類及嚴(yán)重程度,自動(dòng)調(diào)整噴藥劑量,實(shí)現(xiàn)精準(zhǔn)農(nóng)業(yè)管理。將自主設(shè)計(jì)的變量噴藥系統(tǒng)集成并部署于計(jì)算機(jī)控制系統(tǒng)中,并對(duì)其檢測(cè)性能進(jìn)行驗(yàn)證,試驗(yàn)結(jié)果表明,相較于基準(zhǔn)模型 YOLO v5s,改進(jìn)后模型精確率(P)、召回率(R)、mAP值分別提升1.6、1.3、0.7個(gè)百分點(diǎn),降低了病蟲(chóng)害誤檢,避免對(duì)非病蟲(chóng)害區(qū)域的誤噴,同時(shí)減少漏檢確保了病蟲(chóng)害區(qū)域得到及時(shí)有效處理,綜合反映了系統(tǒng)在不同病蟲(chóng)害類別上的整體識(shí)別能力;對(duì)于玉米螟、黏蟲(chóng)、灰斑病、葉斑病和銹病,模型識(shí)別準(zhǔn)確率穩(wěn)定在60%以上,而對(duì)于紅蜘蛛、蚜蟲(chóng)識(shí)別準(zhǔn)確率則在40%以上。于田間進(jìn)行噴藥性能試驗(yàn),并對(duì)霧滴沉積、霧滴漂移及省藥率等關(guān)鍵指標(biāo)進(jìn)行測(cè)試與分析,結(jié)果表明,最低霧滴覆蓋率為52%,最低平均沉積密度為71.3滴/cm2,均達(dá)到病蟲(chóng)害防治要求;省藥率與地面流失率最低值分別為32.1%和22%,顯著降低了農(nóng)藥總體消耗量和地面流失率。本文設(shè)計(jì)的玉米病蟲(chóng)害檢測(cè)及精準(zhǔn)變量噴藥系統(tǒng),顯著提升了病蟲(chóng)害識(shí)別準(zhǔn)確性,提高了農(nóng)藥利用率并降低環(huán)境污染,為病蟲(chóng)害防控提供科學(xué)高效的解決方案。

    Abstract:

    A set of pest and disease detection and precise variable spraying system, based on visual recognition, was designed for maize, addressing traditional issues of pesticide waste and spraying inefficiency. Utilizing image processing and machine vision, this system automatically and accurately identified pests and diseases in maize fields, adjusting spraying doses accordingly. It was then integrated into a computer control system, with its performance verified. The system surpassed the benchmark model YOLO v5s, improving P, R, and mAP by 1.6,1.3 and 0.7 percentage points,respectively. The high precision rate reduced false detection of pests and diseases to avoid false spraying of non-pest areas. The high recall rate reduces missed detection to ensure timely and effective treatment of pest and disease areas. The improvement of mAP value comprehensively reflected the overall identification ability of the system in different pest and disease categories. It stably identified maize stem borer, slime molds, grey spot, leaf spot, and rust diseases with over 60% accuracy, and red spider and aphid with over 40% accuracy. Field tests evaluated droplet deposition, drift, and pesticide saving rates. The system achieved a minimum droplet coverage of 52% and deposition density of 71.3 drops/cm2, satisfying pest control needs. Pesticide saving and ground wastage rates reached lows of 32.1% and 22%, respectively, significantly reducing overall pesticide consumption and waste. This maize pest and disease detection and precision variable spraying system significantly enhanced identification accuracy, improved pesticide utilization, and reduced environmental pollution, offering a scientific and efficient approach to pest and disease management.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

朱惠斌,王明鵬,白麗珍,張媛媛,劉祺,李镕東.基于視覺(jué)識(shí)別的玉米病蟲(chóng)害檢測(cè)與精準(zhǔn)變量噴藥系統(tǒng)研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(s2):210-221. ZHU Huibin, WANG Mingpeng, BAI Lizhen, ZHANG Yuanyuan, LIU Qi, LI Rongdong. Maize Pest and Disease Detection and Precise Variable Spraying System Based on Visual Recognition[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(s2):210-221.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-08-03
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-12-10
  • 出版日期:
文章二維碼