ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于LOF的聯(lián)合收獲機(jī)制造質(zhì)量檢測(cè)與分級(jí)系統(tǒng)研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

農(nóng)機(jī)研發(fā)制造推廣應(yīng)用一體化試點(diǎn)項(xiàng)目(69194014)


LOF-based Combine Harvester Manufacturing Quality Detection and Grading System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    隨著制造業(yè)對(duì)于產(chǎn)品質(zhì)量的要求越來(lái)越高,機(jī)器學(xué)習(xí)技術(shù)在制造質(zhì)量控制中的應(yīng)用開(kāi)始受到關(guān)注。針對(duì)聯(lián)合收獲機(jī)制造質(zhì)量檢測(cè)過(guò)程自動(dòng)化和集成化程度較低、缺乏定量評(píng)價(jià)手段等問(wèn)題,設(shè)計(jì)開(kāi)發(fā)了一套聯(lián)合收獲機(jī)制造質(zhì)量終檢系統(tǒng),在此基礎(chǔ)上提出了“終檢系統(tǒng)+二次分級(jí)”的制造質(zhì)量混合檢測(cè)方法,通過(guò)終檢軟件排查合格區(qū)間以外的異常數(shù)據(jù),篩選劣質(zhì)產(chǎn)品;通過(guò)分級(jí)模型對(duì)合格產(chǎn)品進(jìn)行二次檢測(cè),標(biāo)記質(zhì)量隱患。在整合和分析聯(lián)合收獲機(jī)制造質(zhì)量檢測(cè)需求的基礎(chǔ)上提出了檢測(cè)流程并通過(guò)Visual Components數(shù)字車間仿真平臺(tái)對(duì)總體方案進(jìn)行仿真和測(cè)試。根據(jù)實(shí)際需求和檢測(cè)功能開(kāi)發(fā)了基于LabVIEW平臺(tái)的聯(lián)合收獲機(jī)終檢系統(tǒng)軟件,并設(shè)計(jì)了人機(jī)交互界面。試驗(yàn)結(jié)果表明系統(tǒng)可以滿足各項(xiàng)檢測(cè)需求并實(shí)現(xiàn)產(chǎn)品質(zhì)量檢測(cè)功能,初步驗(yàn)證了系統(tǒng)可行性。結(jié)合使用場(chǎng)景選用局部異常因子(Local outlier factor,LOF)作為二次分級(jí)算法,根據(jù)異常檢測(cè)原理將其集成到檢測(cè)流程中,并建立了制造質(zhì)量檢測(cè)與分級(jí)算法架構(gòu),依據(jù)處理結(jié)果將初篩合格的產(chǎn)品二次分類并標(biāo)記為“good”和“tracked”,進(jìn)而完善制造過(guò)程質(zhì)量檢測(cè)-評(píng)價(jià)體系。訓(xùn)練結(jié)果表明LOF可以在差異性不顯著的數(shù)據(jù)集中識(shí)別異常樣本,性能驗(yàn)證過(guò)程中該方法可以準(zhǔn)確識(shí)別并標(biāo)記測(cè)試數(shù)據(jù)集中的“tracked”樣本,且與四分位圖的分布一致,進(jìn)一步驗(yàn)證了該混合檢測(cè)方法的有效性。本研究開(kāi)發(fā)的聯(lián)合收獲機(jī)制造質(zhì)量檢測(cè)系統(tǒng)和提出的分級(jí)方法具有應(yīng)用價(jià)值,將數(shù)字車間架構(gòu)與機(jī)器學(xué)習(xí)方法應(yīng)用于農(nóng)機(jī)裝備產(chǎn)品制造質(zhì)量檢測(cè),為復(fù)雜農(nóng)機(jī)裝備制造質(zhì)量控制提供了解決思路和方法。

    Abstract:

    With the increasing demand for product quality in the manufacturing industry, the application of machine learning (ML) technology in manufacturing quality control has been under attention. To address the low automation and integration, as well as the lack of quantitative evaluation methods in the manufacturing quality inspection for combine harvester, a combine harvester manufacturing quality end-of-line inspection system was designed and developed. Based on this system, an "end-of-line inspection + secondary grading" manufacturing quality hybrid inspection method was proposed, which used the inspection software to screen out abnormal products outside the qualified range and select superior and inferior products. The secondary grading model performed a secondary inspection on qualified products and marks hidden problems. Firstly, based on the integration and analysis of the combine harvester manufacturing quality inspection requirements, the detection flow was designed. The overall design of the system was tested and simulated by using the Visual Components digital workshop platform. The LabVIEW-based end-of-line inspection software was developed according to the actual requirements and detection functions, and corresponding userfriendly human-machine interfaces were designed. The results of the end-of-line workshop inspection tests showed that the system can meet various inspection requirements and achieve software functions, preliminarily verifying the feasibility of the system. Secondly, local outlier factor (LOF) was selected as the secondary grading algorithm according to the scenario, and it was integrated into the detection flow based on its anomaly detection principle. Then, a manufacturing quality inspection and grading framework was established, and the grading process classified the initially screened qualified products into "good" and "tracked" groups based on the processing results, thereby improving the manufacturing quality inspection and evaluation system. The training results indicated that LOF-based method can identify anomalous samples in the dataset with insignificant differences. In the performance validation process, this method accurately identified the four "tracked" samples in the testing dataset, which was consistent with the distribution of the quartile plots, further validating the effectiveness of this hybrid detection method. The developed end-of-line inspection system for the manufacturing quality of combine harvesters and the proposed grading method had important practical application value, promoting the application of digital workshop concept and ML on agricultural machinery, and providing solutions and methods for agricultural machinery manufacturing quality control.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

黃勝操,趙軍杰,李茂林,倪昕東,毛旭,陳度.基于LOF的聯(lián)合收獲機(jī)制造質(zhì)量檢測(cè)與分級(jí)系統(tǒng)研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(s2):75-84. HUANG Shengcao, ZHAO Junjie, LI Maolin, NI Xindong, MAO Xu, CHEN Du. LOF-based Combine Harvester Manufacturing Quality Detection and Grading System[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(s2):75-84.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-07-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-12-10
  • 出版日期:
文章二維碼