ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于卷積神經(jīng)網(wǎng)絡(luò)的移動(dòng)機(jī)器人自適應(yīng)光照增強(qiáng)單目視覺SLAM算法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

云南省基礎(chǔ)研究計(jì)劃項(xiàng)目(202301AU070059)和昆明理工大學(xué)人才培養(yǎng)項(xiàng)目(KKZ320230104)


Adaptive Illumination Enhanced Monocular Vision SLAM Algorithm for Mobile Robots Based on Convolutional Neural Networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    移動(dòng)機(jī)器人視覺SLAM技術(shù)能夠在一定條件下實(shí)時(shí)估計(jì)自身在環(huán)境中的位置,并構(gòu)建和更新環(huán)境稀疏或稠密三維地圖,,這些信息可以幫助機(jī)器人提高對(duì)未知復(fù)雜環(huán)境的準(zhǔn)確感知和適應(yīng)能力,,以執(zhí)行更復(fù)雜的任務(wù),。但使用相機(jī)作為傳感器的視覺SLAM在定位和建圖的精度和穩(wěn)定性方面在很大程度上依賴于采集到的圖像質(zhì)量,在弱光照環(huán)境中,,現(xiàn)有的視覺SLAM算法難以有效地工作,。針對(duì)視覺SLAM在弱光照環(huán)境中定位精度降低和跟蹤丟失的問題。本文提出了一種適應(yīng)弱光照環(huán)境的RLMV-SLAM算法,,該算法使用一個(gè)輕量化的神經(jīng)網(wǎng)絡(luò)對(duì)輸入圖像進(jìn)行預(yù)處理,,增強(qiáng)其亮度、對(duì)比度,、色彩和去噪,,同時(shí),該算法使用地圖點(diǎn)補(bǔ)充策略,、Sparse BA和一種實(shí)時(shí)增量閉環(huán)檢測(cè)方法提高了定位和建圖精度和魯棒性,。在公開數(shù)據(jù)集和自采數(shù)據(jù)集上對(duì)該算法進(jìn)行了實(shí)驗(yàn)驗(yàn)證,并與其他主流視覺SLAM方法進(jìn)行了對(duì)比,,結(jié)果表明本文提出的方法將弱光照環(huán)境中有效跟蹤時(shí)長(zhǎng)提升30%以上,,且在公開數(shù)據(jù)集上估計(jì)位姿的誤差也有明顯降低,證明了所提算法的有效性,,為弱光照環(huán)境中同步定位和建圖提供了一定參考,。

    Abstract:

    The visual SLAM technology of mobile robots can estimate their position in the environment in real time under certain conditions, and build and update sparse or dense 3D maps of the environment. This information can help robots improve their accurate perception and adaptability to unknown complex environments, and perform more complex tasks. However, the accuracy and stability of localization and mapping of visual SLAM using cameras as sensors largely depend on the quality of the collected images. In low-light environments, existing visual SLAM algorithms have difficulty working effectively. In response to the problems of reduced positioning accuracy and lost tracking faced by visual SLAM in low-light environments, a visual SLAM algorithm suitable for low-light environments, RLMV-SLAM was proposed. This algorithm used a lightweight neural network to preprocess the input images, enhancing their brightness, contrast, color, and denoising. At the same time, the algorithm applied a map point supplement strategy, Sparse BA, and a real-time incremental loop closure detection method to improve the accuracy and robustness of localization and mapping. The research experimentally verified this algorithm on public datasets and self-collected datasets, and compared it with other mainstream visual SLAM methods. The results showed that the method proposed can increase the effective tracking time in low-light environments by more than 30% and significantly reduce the pose error of pose estimation on public datasets, proving the effectiveness of the proposed algorithm and providing a reference for simultaneous localization and mapping in low-light environments.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

陳久朋,陳治帆,傘紅軍,趙龍?jiān)?彭真.基于卷積神經(jīng)網(wǎng)絡(luò)的移動(dòng)機(jī)器人自適應(yīng)光照增強(qiáng)單目視覺SLAM算法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(12):383-391,403. CHEN Jiupeng, CHEN Zhifan, SAN Hongjun, ZHAO Longyun, PENG Zhen. Adaptive Illumination Enhanced Monocular Vision SLAM Algorithm for Mobile Robots Based on Convolutional Neural Networks[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(12):383-391,,403.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-06-19
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-12-10
  • 出版日期:
文章二維碼