ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLO v5-StrongSORT的屠宰場(chǎng)豬只精準(zhǔn)計(jì)數(shù)方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

科技創(chuàng)新2030—“新一代人工智能”重大項(xiàng)目(2021ZD0113802)和國(guó)家生豬產(chǎn)業(yè)技術(shù)體系智能化養(yǎng)殖崗位科學(xué)家項(xiàng)目(CARS-35)


Accurate Counting of Pigs in Slaughterhouses Based on Improved YOLO v5-StrongSORT
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    豬只計(jì)數(shù)是屠宰場(chǎng)生產(chǎn)管理、資產(chǎn)估計(jì)的重要環(huán)節(jié),。針對(duì)當(dāng)前屠宰場(chǎng)豬只數(shù)量統(tǒng)計(jì)過(guò)程中人工計(jì)數(shù)耗時(shí)長(zhǎng),、錯(cuò)誤率高的問(wèn)題,提出了一種基于改進(jìn)YOLO v5-StrongSORT的屠宰場(chǎng)豬只精準(zhǔn)計(jì)數(shù)方法,。首先,,在改進(jìn)YOLO v5模型中引入真實(shí)寬高損失與縱橫比以提升損失函數(shù)性能,并在Neck層引入高效通道注意力機(jī)制(Efficient channel attention, ECA),,提升模型在復(fù)雜環(huán)境下的識(shí)別能力,。然后,基于StrongSORT構(gòu)建檢測(cè)機(jī)制實(shí)現(xiàn)對(duì)豬只的重識(shí)別,。最后,,基于StrongSORT提出了一種區(qū)域ID信息檢測(cè)的豬只計(jì)數(shù)方法。試驗(yàn)結(jié)果表明,,改進(jìn)YOLO v5模型對(duì)豬只識(shí)別精確率為93.78%,,召回率為91.98%,平均精度均值為96.29%,,識(shí)別速度為500f/s,,較YOLO v5s模型召回率提高1.14個(gè)百分點(diǎn),平均精度均值提高0.89個(gè)百分點(diǎn),,識(shí)別速度提高85.0%,。將改進(jìn)YOLO v5與StrongSORT區(qū)域計(jì)數(shù)方法結(jié)合進(jìn)行豬只計(jì)數(shù)的準(zhǔn)確率為98.46%,計(jì)數(shù)速率為73f/s,,較人工計(jì)數(shù)準(zhǔn)確率提高1.54個(gè)百分點(diǎn),,較原始模型計(jì)數(shù)準(zhǔn)確率提高9.23個(gè)百分點(diǎn),計(jì)數(shù)速率提高21.87%,。本研究豬只計(jì)數(shù)方法具有較高的計(jì)數(shù)精度,,適用于屠宰場(chǎng)豬只數(shù)量統(tǒng)計(jì)。

    Abstract:

    Pig counting plays a crucial role in the management of slaughterhouse production and the estimation of assets. In response to the existing challenges of labor-intensive manual counting and elevated error rates within the pig counting processes of slaughterhouses, a meticulous pig counting methodology was introduced, leveraging an improved integration of YOLO v5 and StrongSORT. Initially, the improved YOLO v5 model incorporated real aspect loss and aspect ratio to enhance the performance of the loss function. Additionally, an efficient channel attention (ECA) mechanism was introduced into the Neck layer to augment the model’s recognition capabilities in complex environments. Subsequently, a detection mechanism was constructed based on StrongSORT to facilitate the re-identification of pigs. Finally, a pig counting method utilizing area ID information detection was introduced based on the StrongSORT framework. Experimental results demonstrated that the enhanced YOLO v5 algorithm achieved a pig recognition accuracy of 93.78%, a recall rate of 91.98%, and a mean average precision (mAP) of 96.29%, with a recognition speed of 500 frames per second (f/s). This represented a significant improvement of 1.14 percentage points in recall, 0.89 percentage points in mAP, and an 85.0% increase in frame rate compared with that of the YOLO v5s model. The accuracy of combining the improved YOLO v5 with the StrongSORT area counting method for pig counting was 98.46%, and the counting speed was 73f/s, which was 1.54 percentage points higher than the manual counting accuracy, 9.23 percentage points higher than the original model counting accuracy, and 21.87% higher than the counting speed. The pig counting method proposed demonstrated high accuracy and was well-suited for the enumeration of pigs in slaughterhouse settings.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張站奇,孫顯彬,孫賀,閔海波,孔莉婭,張洪亮.基于改進(jìn)YOLO v5-StrongSORT的屠宰場(chǎng)豬只精準(zhǔn)計(jì)數(shù)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(12):354-364. ZHANG Zhanqi, SUN Xianbin, SUN He, MIN Haibo, KONG Liya, ZHANG Hongliang. Accurate Counting of Pigs in Slaughterhouses Based on Improved YOLO v5-StrongSORT[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(12):354-364.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-12-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-12-10
  • 出版日期:
文章二維碼