ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于漸進(jìn)式學(xué)習(xí)和增強(qiáng)原型度量的小樣本農(nóng)作物病害識(shí)別方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(62176088)和河南省科技發(fā)展計(jì)劃項(xiàng)目(222102110135)


Few-shot Crop Disease Recognition Based on Progressive Learning and Enhanced Prototype Metric
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了開(kāi)展低成本、通用,、靈活的農(nóng)作物病害識(shí)別,,提出了一種基于漸進(jìn)式學(xué)習(xí)和增強(qiáng)原型度量的小樣本農(nóng)作物病害識(shí)別網(wǎng)絡(luò)(Few-shot crop disease recognition network based on progressive learning and enhanced prototype metric, FPE-Net)。首先,,利用設(shè)計(jì)的增強(qiáng)原型度量模塊,,計(jì)算能夠準(zhǔn)確表示類別中心的增強(qiáng)原型,并充分利用增強(qiáng)原型中的豐富類別信息對(duì)農(nóng)作物病害進(jìn)行識(shí)別,;其次,,采用設(shè)計(jì)的漸進(jìn)式學(xué)習(xí)策略對(duì)模型進(jìn)行訓(xùn)練,以幫助模型更好地適應(yīng)農(nóng)作物病害識(shí)別任務(wù),,提升模型小樣本農(nóng)作物病害識(shí)別精度,。在自制小樣本農(nóng)作物病害數(shù)據(jù)集FSCD-Base、FSCD-Complex以及FSCD-Base到FSCD-Complex的跨域設(shè)置上,,F(xiàn)PE-Net的5-way 1-shot平均識(shí)別準(zhǔn)確率分別達(dá)到70.65%,、53.47%和49.58%,5-way 5-shot平均識(shí)別準(zhǔn)確率分別達(dá)到83.02%,、66.15%和64.21%,。實(shí)驗(yàn)結(jié)果表明,本文提出的FPE-Net明顯優(yōu)于其他小樣本農(nóng)作物病害識(shí)別模型,,在訓(xùn)練樣本不足的情況下能夠更準(zhǔn)確識(shí)別農(nóng)作物病害,。

    Abstract:

    At present, crop disease recognition is mostly realized based on convolutional neural network. However, due to the lack of training data in actual agricultural production, these crop disease recognition methods based on convolutional neural network often have limited applications and perform poorly. In order to carry out the low-cost, general and flexible crop disease recognition, a fewshot crop disease recognition network based on progressive learning and enhanced prototype metric was proposed. Specifically, an enhanced prototype metric module was firstly designed to compute the enhanced prototype that can accurately represent the category center, and make full use of its rich category information to recognize the crop disease. Then, a progressive learning strategy was designed to train the model to help it better adapt to the crop disease recognition, and further improve the few-shot crop disease recognition accuracy. On the self-made few-shot crop disease datasets FSCD-Base, FSCD-Complex and the cross-domain setting from FSCD-Base to FSCD-Complex, the 5-way 1-shot average recognition accuracy of the FPE-Net reached 70.65%, 53.47% and 49.58%, and the 5-way 5-shot average recognition accuracy of the FPE-Net reached 83.02%, 66.15% and 64.21%, respectively. These experimental results showed that the FPE-Net was significantly better than other fewshot crop disease recognition models, which can recognize crop diseases more accurately when the training data was insufficient.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

杜海順,安文昊,張春海,周毅.基于漸進(jìn)式學(xué)習(xí)和增強(qiáng)原型度量的小樣本農(nóng)作物病害識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(12):344-353. DU Haishun, AN Wenhao, ZHANG Chunhai, ZHOU Yi. Few-shot Crop Disease Recognition Based on Progressive Learning and Enhanced Prototype Metric[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(12):344-353.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-07-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-12-10
  • 出版日期:
文章二維碼