ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

融合動態(tài)詞典特征和CBAM的蘋果病蟲害命名實體識別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

陜西省重點研發(fā)計劃項目(2023-YBNY-219)


Named Entity Recognition of Apple Diseases and Pests Based on Dynamic Dictionary Features and CBAM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    在蘋果病蟲害命名實體識別中,,針對罕見字語義特征提取不充分,實體類別相似難以區(qū)分的問題,,本文提出一種融合動態(tài)詞典和卷積塊注意力模塊(Convolutional block attention module, CBAM)的實體識別方法,。首先,基于字的雙向長短時記憶-條件隨機場模型(Bidirectional long short-term memory-conditional random field, BiLSTM-CRF),,在嵌入層利用通道注意力網(wǎng)絡(luò)(Channel attention module, CAM)動態(tài)融合詞典信息,,同步集成字的四角號碼信息,以提高對罕見字表征能力,。隨后,,對序列編碼層輸出序列特征,基于空間注意力網(wǎng)絡(luò)(Spatial attention module, SAM),,新增并行連接的空間注意力(Parallel connection spatial attention, PCSA)模塊,,提高模型對上下文信息提取能力。最后,,使用含有6大類標(biāo)簽,、127574個標(biāo)注字符的蘋果病蟲害數(shù)據(jù)集進行驗證測試。結(jié)果顯示模型精確率,、召回率和F1值分別達到95.76%,、92.46%,、94.08%,較現(xiàn)有的常用同類模型性能顯著提升,,實現(xiàn)了對農(nóng)業(yè)病蟲害命名實體的精準(zhǔn)識別,。

    Abstract:

    In the named entity recognition of apple diseases and pests, a entity recognition model was proposed to address the problems of insufficient semantic feature extraction for rare words and difficulties in distinguishing entities due to similar entity categories. This model integrated dynamic lexicon and convolutional block attention module (CBAM). Firstly, based on the bidirectional long short-term memory-conditional random field model (BiLSTM-CRF), a channel attention module (CAM) was used to dynamically obtain lexicon information for the words, and the fourcorner code information of Chinese characters was simultaneously fused to enhance the representation ability for rare words. Then after the sequence features output by the sequence encoding layer, a parallel connection spatial attention (PCSA) module based on the spatial attention module (SAM) was added to improve the model’s ability to extract contextual information. Finally, the model was validated and tested by using an apple disease and pest dataset which contained six major classes and 127574 annotated characters. The results showed that the precision, recall, and F1 value could reach 95.76%, 92.46% and 94.08%, respectively,indicating a significant improvement in performance compared with existing commonly used similar models, which achieved accurate recognition of agricultural disease and pest named entities.

    參考文獻
    相似文獻
    引證文獻
引用本文

蒲攀,劉勇,張越,王飛逸,苗園爽,謙博,黃鋁文.融合動態(tài)詞典特征和CBAM的蘋果病蟲害命名實體識別方法[J].農(nóng)業(yè)機械學(xué)報,2024,55(12):333-343. PU Pan, LIU Yong, ZHANG Yue, WANG Feiyi, MIAO Yuanshuang, QIAN Bo, HUANG Lüwen. Named Entity Recognition of Apple Diseases and Pests Based on Dynamic Dictionary Features and CBAM[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(12):333-343.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-01-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-12-10
  • 出版日期:
文章二維碼