ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于YC-YOLO v7模型的油菜幼苗株數(shù)識(shí)別方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD2301402)和安徽省重點(diǎn)研究與開(kāi)發(fā)計(jì)劃項(xiàng)目(202204c06020071)


Identification of Rapeseed Seedling Number Based on YC-YOLO v7 Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)大田環(huán)境下油菜幼苗尺度不一,、分布密集、識(shí)別難度大等問(wèn)題,,開(kāi)展了基于YC-YOLO v7模型的油菜幼苗株數(shù)識(shí)別研究,。在原模型YOLO v7的高效聚合網(wǎng)絡(luò)ELAN中引入深度可分離卷積模塊,提高模型對(duì)細(xì)小特征的提取能力,;通過(guò)在主干網(wǎng)絡(luò)輸出的特征層中添加CBAM注意力機(jī)制模塊,,加強(qiáng)模型對(duì)小目標(biāo)的識(shí)別精度;將損失函數(shù)CIOU替換為WIOU,,提高了錨框質(zhì)量,;為擴(kuò)大模型對(duì)目標(biāo)的感受野,構(gòu)建了SPPF空間金字塔結(jié)構(gòu),。試驗(yàn)結(jié)果表明,,改進(jìn)后YC-YOLO v7模型平均精度均值為94.0%,精確率為89.8%,,召回率為91.2%,,推理速度提高16.1f/s,浮點(diǎn)運(yùn)算量降低2.56×1010,;與其他一階段模型YOLO v5s,、SSD和二階段模型Faster R-CNN進(jìn)行對(duì)比,平均精度均值分別提高12.8,、17.8,、20.3個(gè)百分點(diǎn)?;赮C-YOLO v7模型搭建的油菜幼苗檢測(cè)識(shí)別系統(tǒng)準(zhǔn)確率大于90%,,可為大田環(huán)境下油菜幼苗精準(zhǔn)計(jì)數(shù)提供技術(shù)支撐,。

    Abstract:

    In response to problems such as different graphics, densely distributed, and difficult to identify in the field environment, the study of the number of rapeseed seedlings based on the YC-YOLO v7 algorithm was carried out. Introduce the depth-separated convolutional module in the ELAN of the original model YOLO v7 to improve the extraction ability of the model on small features. By adding the CBAM attention mechanism module to the feature layer output by the main network, the model of the models identification of small targets is enhanced. Replace the loss function CIOU to WIOU, which improves the quality of the anchor frame. In order to expand the model of the model for the goal, the SPPF space pyramid structure was constructed. The test results show that the average accuracy of the improved YC-YOLO v7 model was 94.0%, the accuracy was 89.8%, the recall rate was 91.2%, the reasoning speed increased by 16.1.f/s, and the floating-point computing volume was reduced by 2.56×1010. Compared with the other phase model YOLO v5s, SSD, and second-stage model Faster R-CNN, the average accuracy increased by 12.8 percentage points, 17.8 percentage points, and 20.3 percentage points, respectively. The improved YC-YOLO v7 model was deployed to the PC, and an oilseed rape seedling detection and identification system was constructed using the PYQT5 framework, with the average accuracy of the system detection being greater than 90%, which can provide technical support for the accurate counting of oilseed rape seedlings in the field environment, and provide effective support for the farmers to judge the quality of the breeding and the effect of sowing.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李兆東,章艷芳,汪蘊(yùn)紅,趙前華,劉立超,張?zhí)?陳永新.基于YC-YOLO v7模型的油菜幼苗株數(shù)識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(12):322-332. LI Zhaodong, ZHANG Yanfang, WANG Yunhong, ZHAO Qianhua, LIU Lichao, ZHANG Tian, CHEN Yongxin. Identification of Rapeseed Seedling Number Based on YC-YOLO v7 Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(12):322-332.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-07-02
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-12-10
  • 出版日期:
文章二維碼