ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于一致性半監(jiān)督學習的蘋果葉片病斑分割模型研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(32360434),、甘肅省高校產業(yè)支撐計劃項目(2023CYZC-10)和甘肅省自然科學基金項目(23JRRA705)


Apple Leaf Spot Segmentation Model Based on Consistency Semi-supervised Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    快速準確的病斑分割對于病害嚴重程度評估及科學施藥具有重要意義?;谏疃葘W習的語義分割為構建高精度病斑分割模型提供了技術支撐,。然而,蘋果病斑標注費時費力,。為了解決這一問題,,以隴東蘋果為研究對象,提出了一種基于輕量級一致性半監(jiān)督學習框架的蘋果葉片病斑分割模型,。首先,,遵循Mean Teacher半監(jiān)督學習框架,使用2個輕量化的DeepLabV3+模型,,構建病斑語義分割模型,,以提高模型從有限標注數據中提取特征描述符的能力。其次,,對比19種一致性正則化方法,,發(fā)現MSE+Huber 組合對圖像的細微差異更敏感、抗噪性更高,,可提高模型對病斑過小,、分布不均、邊緣模糊的適應性,。接著,,使用貝葉斯優(yōu)化算法對模型涉及的6個超參數進行尋優(yōu),以加快模型收斂速度和穩(wěn)定性,。結果表明,,優(yōu)化后模型僅使用30%的標注數據,病斑分割精確率達到95.60%,,平均交并比為94.85%,,平均像素準確率為96.50%。效果均優(yōu)于全監(jiān)督和自訓練半監(jiān)督學習框架,。

    Abstract:

    Rapid and accurate lesion segmentation was essential for assessing disease severity and ensuring precise pesticide application. Deep learning-based semantic segmentation offered the technical foundation necessary for developing high-precision disease detection models. However, the annotation of apple leaf spots was both time-consuming and labor-intensive. To address this issue, a model for apple leaf spot segmentation was proposed based on a lightweight consistency semi-supervised learning framework, using Longdong apples as the research subject. Firstly, following the Mean Teacher semi-supervised learning framework, two lightweight DeepLabV3+ models were utilized to build the lesion semantic segmentation model, which improved its ability to extract feature descriptors from limited annotated data. Secondly, a systematic comparison of 19 consistency regularization methods revealed that the combination of MSE and Huber was more sensitive to subtle image differences and exhibited higher noise resistance, thereby improving the model’s adaptability to small, unevenly distributed, and blurred-edge lesions. Next, a Bayesian algorithm was utilized to optimize six hyperparameters involved in the model, which accelerated convergence speed and enhanced stability. The results demonstrated that the optimized model, using only 30% of the annotated data, achieved a precision of 95.60%, a mean intersection over union (mIoU) of 94.85%, and a mean pixel accuracy (mPA) of 96.50%. These outcomes surpassed those of fully supervised and self-training semi-supervised learning frameworks. The findings offered agricultural practitioners an efficient and reliable tool for disease detection.

    參考文獻
    相似文獻
    引證文獻
引用本文

丁永軍,楊文濤,趙一龍.基于一致性半監(jiān)督學習的蘋果葉片病斑分割模型研究[J].農業(yè)機械學報,2024,55(12):314-321. DING Yongjun, YANG Wentao, ZHAO Yilong. Apple Leaf Spot Segmentation Model Based on Consistency Semi-supervised Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(12):314-321.

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-07-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-12-10
  • 出版日期:
文章二維碼