ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于DWT-DE變換和AHA-ELM算法的水稻葉片氮含量預(yù)測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

遼寧省教育廳面上項目(LJKMZ20221035,、LJKZ0683)、遼寧省科技廳面上項目(2023-MS-212),、國家自然科學基金項目(32001415)和遼寧省自然基金指導計劃項目(2019-ZD-0720)


Prediction of Nitrogen Content in Rice Leaves Based on DWT-DE Transformation and AHA-ELM Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為提供一種利用光譜數(shù)據(jù)對水稻氮素含量加以快速,、無損、準確預(yù)測的方法,,本文以東北水稻為研究對象,,采集水稻3個生育期的高光譜數(shù)據(jù),結(jié)合室內(nèi)化學實驗,,為了提高氮素預(yù)測精度和模型可解釋性,,建立水稻氮素含量反演模型。將獲取的高光譜數(shù)據(jù)和相對應(yīng)的水稻葉片氮素含量,,首先通過低通濾波方法對光譜數(shù)據(jù)進行預(yù)處理,,針對處理后光譜數(shù)據(jù),采用耦合離散小波和一階微分變換(DWT-DE變換)對光譜數(shù)據(jù)進行降維,,并分別與主成分分析(PCA),、離散小波多尺度分解方法進行對比。以降維后的結(jié)果作為輸入,,實測葉片氮素含量為輸出,,分別建立極限學習機(ELM),、粒子群優(yōu)化支持向量機(PSO-SVM)和人工蜂鳥算法優(yōu)化的極限學習機(AHA-ELM)反演模型,對水稻葉片氮素含量進行預(yù)測和驗證,。結(jié)果表明,,采用耦合離散小波和一階微分變換結(jié)果建立的AHA-ELM模型預(yù)測精度最高,預(yù)測效果優(yōu)于ELM和PSO-SVM模型,,訓練集決定系數(shù)R2為0.8064,,RMSE為0.3251mg/g,驗證集R2為0.7915,,RMSE為0.3620mg/g,。鑒于此,,本文提出的經(jīng)DWT-DE變換建立的AHA-ELM模型在快速檢測水稻氮素含量中有顯著優(yōu)勢,,可為水稻精準變量施肥提供參考。

    Abstract:

    In order to provide a rapid, non-destructive, and accurate prediction method for nitrogen content in rice using spectral data, focusing on northeast rice as the research object, hyperspectral data of rice in three growth stages were collected, and combined with indoor chemical experiments, aiming to improve the prediction accuracy and model interpretability of nitrogen content by establishing an inversion model for rice nitrogen content. The acquired hyperspectral data and corresponding nitrogen content of rice leaves were firstly preprocessed by using a low-pass filtering method. For the processed spectral data, a coupling discrete wavelet transform and first-order differential transform (DWT-DE transform) were used for dimensionality reduction, and compared with principal component analysis (PCA) and discrete wavelet multiresolution decomposition methods. The dimensionality-reduced results were used as inputs, and the measured leaf nitrogen content was the output, to establish inversion models by using extreme learning machine (ELM), particle swarm optimization support vector machine (PSO-SVM), and artificial hummingbird algorithm optimized extreme learning machine (AHA-ELM), respectively, for predicting and validating rice leaf nitrogen content. The results showed that the AHA-ELM model established using the results of the coupling discrete wavelet and first-order differential transform had the highest prediction accuracy, which was superior to the ELM and PSO-SVM models. The determination coefficient R2 of the training set was 0.8064, and the root mean square error RMSE was 0.3251mg/g. The R2 of the validation set was 0.7915, and the RMSE was 0.3620mg/g. Therefore, the proposed AHA-ELM model established by DWT-DE transform had significant advantages in the rapid detection of rice nitrogen content, and can provide a good reference for precise variable fertilization in rice.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉潭,王雯琦,李子默,齊緣,郭忠輝,許童羽.基于DWT-DE變換和AHA-ELM算法的水稻葉片氮含量預(yù)測方法[J].農(nóng)業(yè)機械學報,2024,55(12):306-313. LIU Tan, WANG Wenqi, LI Zimo, QI Yuan, GUO Zhonghui, XU Tongyu. Prediction of Nitrogen Content in Rice Leaves Based on DWT-DE Transformation and AHA-ELM Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(12):306-313.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-01-12
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-12-10
  • 出版日期:
文章二維碼