ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于無人機(jī)影像與機(jī)器學(xué)習(xí)的柑橘產(chǎn)量估測研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

江西省教育廳科技項(xiàng)目(GJJ180925)和江西省科技廳重點(diǎn)研發(fā)計(jì)劃重點(diǎn)項(xiàng)目(20212BDH80016)


Citrus Yield Estimation by Integrating UAV Imagery and Machine Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了準(zhǔn)確,、快速地預(yù)測柑橘產(chǎn)量以準(zhǔn)確指導(dǎo)果園生產(chǎn)管理,,通過大疆多光譜版無人機(jī)獲取柑橘果實(shí)成熟期的遙感影像數(shù)據(jù),,并從圖像中提取了可見光和多光譜波段指數(shù)作為特征變量,,采用極端梯度提升(eXtreme gradient boosting,,XGB),、隨機(jī)森林(Random forest,RF)以及支持向量機(jī)(Support vector machine,,SVM)模型分別構(gòu)建柑橘果實(shí)有無分類模型,、果實(shí)數(shù)量和質(zhì)量估測模型。結(jié)果表明:通過XGB模型對特征變量進(jìn)行篩選分析,,柑橘果實(shí)有無的分類中超紅指數(shù)ExR最重要,,而數(shù)量和質(zhì)量的估測中改進(jìn)超綠指數(shù)MExG最重要,。組合建模中3個(gè)模型均在組合4的情況下精度較好。對于分類模型,,最優(yōu)模型為SVM模型(AUC為0.969,,準(zhǔn)確率為0.919),而對于數(shù)量和質(zhì)量估測模型,,最優(yōu)模型為XGB模型(數(shù)量:R2=0.79,,RMSE為466個(gè);質(zhì)量:R2=0.79,,RMSE為19.51kg),。最后利用Shapley additive explanations(SHAP)方法揭示了植被指數(shù)特征在產(chǎn)量估測模型構(gòu)建時(shí)的重要性,并闡明了SHAP值排在前四的特征交互影響,。本研究結(jié)果可為無人機(jī)遙感在柑橘產(chǎn)量方面的研究提供應(yīng)用參考和理論依據(jù),。

    Abstract:

    In order to accurately and rapidly predict citrus yield to precisely guide orchard production management, remote sensing image data of citrus fruit ripening stage was obtained by DJI multispectral version of UAV, and visible and multispectral band indices were extracted as feature variables from the images. The eXtreme gradient boosting (XGB), random forest (RF) and support vector machine (SVM) model were used to construct citrus fruit presence and absence classification model, fruit number and quality estimation model, respectively. The results showed that the excess red index was the most important in the classification of citrus fruit presence and absence while the modified excess green index was the most important in the estimation of number and quality through the screening analysis of feature variables by the XGB model. All three models in combination modeling had better accuracy in combination 4. For the classification model, the optimal model was the SVM model with AUC of 0.969 and accuracy of 0.919.While the XGB model was the best model for estimating both number and quality,with the number estimation model’s R2 value being 0.79 and RMSE being 466, and the quality estimation model’s R2 value being 0.79 and RMSE being 19.51kg. Finally, the Shapley additive explanations (SHAP) method was utilized to reveal the importance of vegetation index features in the construction of the yield estimation model and to elucidate the interaction effects of the features with the top four SHAP values. The research results can provide an application reference and theoretical basis for the research of UAV remote sensing in citrus yield.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

吳立峰,徐文浩,裴青寶.基于無人機(jī)影像與機(jī)器學(xué)習(xí)的柑橘產(chǎn)量估測研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(12):294-305. WU Lifeng, XU Wenhao, PEI Qingbao. Citrus Yield Estimation by Integrating UAV Imagery and Machine Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(12):294-305.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-08-07
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-12-10
  • 出版日期:
文章二維碼