ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于光譜和紋理信息空間尺度優(yōu)化的夏玉米冠層EWT反演模型
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(U2243235)


EWT Inversion Model of Summer Maize Based on Spatial Scale Optimization of Spectral and Texture Information
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對空間異質(zhì)性導(dǎo)致的冠層等效水厚度(Equivalent water thickness, EWT)反演誤差較大的問題,以4塊長勢差異較大的玉米田為研究對象,,分別采集6個關(guān)鍵生育節(jié)點的EWT數(shù)據(jù),,同時利用無人機多光譜遙感技術(shù)獲取田間的正射影像。以滑動窗口的方式提取遙感影像不同窗口空間尺寸(0.1m×0.1m~2.0m×2.0m)的光譜和紋理信息,,經(jīng)多重共線性檢驗后,,應(yīng)用主成分分析法(Principal component analysis,PCA)分別對光譜參數(shù)(Spectral parameters,,S),、紋理參數(shù)(Texture parameters,T)及光譜與紋理組合參數(shù)(Spectral and texture parameters,,S+T)進行降維,,進而分別利用偏最小二乘法(Partial least squares,PLS),、隨機森林(Random forest,,RF)以及支持向量機(Support vector machine,SVM)構(gòu)建EWT反演模型,,而后利用Kruskal-Wallis檢驗?zāi)P偷木?,并根?jù)多重檢驗結(jié)果探討最佳窗口尺寸的選擇。結(jié)果表明:隨著窗口空間尺度的逐漸增大,,EWT反演模型的精度呈先增大后減小趨勢,;以S+T作為輸入?yún)?shù)構(gòu)建的模型精度顯著優(yōu)于S和T,引入紋理特征后,,基于PLS,、RF和SVM的模型最優(yōu)窗口尺寸校正決定系數(shù)(Adjusted R-square,,R2adj)分別增加0.16,、0.05和0.12,相對均方根誤差(Relative root mean square error,,RRMSE)分別減小4.95%,、1.17%和3.80%,表明紋理特征可以提高EWT模型反演精度,;綜合比較不同建模方法構(gòu)建的9組模型,,確定最優(yōu)采樣窗口空間尺寸為0.7m×0.7m(R2adj最高可達0.82,對應(yīng)的RRMSE為16.57%),。該研究可為基于無人機多光譜影像分析的信息挖掘和EWT監(jiān)測提供參考,。

    Abstract:

    In order to solve the problem of large canopy equivalent water thickness (EWT) inversion error caused by spatial heterogeneity, taking four maize fields with large growth differences as the research object, EWT data of six key growth nodes was collected, and UAV multispectral remote sensing technology was used to obtain orthophoto images in the field, and the spectral and texture information of different window space sizes (0.1m×0.1m to 2.0m×2.0m) of remote sensing images in the form of sliding windows was extracted, and after multicollinearity testing, principal component analysis (PCA) was used to reduce the dimensionality of spectral parameters (S), texture parameters (T) and combinatorial parameters (S+T), respectively, and then the EWT inversion model was constructed by partial least squares (PLS), random forest (RF) and support vector machine (SVM), respectively, and then the accuracy of the model was tested by Kruskal-Wallis, and the choice of optimal window size was discussed according to the results of multiple tests. The results showed that with the gradual increase of the window space scale, the accuracy of the EWT inversion model was increased firstly and then decreased. The accuracy of the model constructed with the S+T as the input variable was significantly better than that of the S and the T, and the adjusted R-square (R2adj) of the optimal window size of the model based on PLS, RF and SVM was increased by 0.16, 0.05 and 0.12, respectively, and the relative root mean square error (RRMSE) was decreased by 4.95%, 1.17% and 3.80%, respectively. The results showed that it was feasible to use texture features to improve the inversion accuracy of EWT model. Comprehensively comparing the nine sets of models constructed by different modeling methods, the optimal sampling window spatial size was finally determined to be 0.7m×0.7m, with R2adj up to 0.82 (corresponding RRMSE of 16.57%). The research result can provide a reference for information mining and EWT monitoring based on UAV multi-spectral image analysis.

    參考文獻
    相似文獻
    引證文獻
引用本文

陳洪,王亞昆,姚一飛,代秦,陳子強,劉暢,李高良,胡笑濤.基于光譜和紋理信息空間尺度優(yōu)化的夏玉米冠層EWT反演模型[J].農(nóng)業(yè)機械學(xué)報,2024,55(12):257-267. CHEN Hong, WANG Yakun, YAO Yifei, DAI Qin, CHEN Ziqiang, LIU Chang, LI Gaoliang, HU Xiaotao. EWT Inversion Model of Summer Maize Based on Spatial Scale Optimization of Spectral and Texture Information[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(12):257-267.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-07-04
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-12-10
  • 出版日期:
文章二維碼