ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于無人機RGB圖像與改進YOLO v5s的宿根蔗缺苗定位方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(52165009)和廣西科技重大專項(桂科AA22117008,、桂科AA22117006)


Method for Locating Missing Ratoon Sugarcane Seedlings Based on RGB Images from Unmanned Aerial Vehicles and Improve YOLO v5s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對預切種式雙芽蔗段橫向補種機缺少整體的缺苗數(shù)據(jù),,導致補種效率不高等問題,,提出了一種基于無人機RGB圖像的宿根蔗缺苗定位方法,。首先,通過無人機快速采集實際田間宿根蔗幼苗的高分辨率圖像,,將航拍大圖(分辨率為5472像素×3648像素)切分成多幅子圖并進行數(shù)據(jù)增強,,從而構建宿根蔗幼苗數(shù)據(jù)集;其次,,在YOLO v5s的基礎上引入P2小目標特征層和DyHead模塊,,提高對幼苗小目標的檢測準確性,并在訓練過程引入圖像加權策略解決樣本數(shù)量不平衡問題,,進一步提高被遮擋幼苗的檢測精度,;然后,在切片輔助推理框架中引入改進模型訓練權重,,在大尺寸田間圖像中實現(xiàn)宿根蔗幼苗的檢測,;最后,構建以改進的DBSCAN聚類算法和PCA擬合算法為核心的作物行識別算法,,在作物行線上定位缺苗位置,。試驗結果表明,改進宿根蔗幼苗檢測模型在子圖上的平均檢測精度為96.8%,,在大圖上的識別精確率和召回率為94.5%和91.8%,,檢測時間為0.32s,?;跈z測的位置坐標信息利用作物行識別算法實現(xiàn)分壟,作物行聚類準確率達到100%,,擬合的作物行中心線角度平均誤差為0.2455°,,作物行中心線上缺苗位置識別的精確率和召回率為91.9%和97.1%,平均定位誤差為9.73像素,。該方法可用于大尺寸復雜田間圖像上的宿根蔗智能缺苗定位,,為補種作業(yè)提供技術支持,,對延長宿根年限、提高甘蔗產(chǎn)量具有重要意義,。

    Abstract:

    In response to the lack of specific missing seedling data for the transverse replanting machine of pre-cut double bud sugarcane segments, resulting in poor replanting efficiency, a method for locating missing ratoon sugarcane seedlings based on UAV RGB images was proposed. Firstly, high-resolution images of ratoon sugarcane seedlings in the field were rapidly captured by using UAVs, which were then segmented into multiple sub-images and subjected to data augmentation to construct a dataset. Secondly, enhancements to the YOLO v5s model involved the introduction of P2 small target feature layers and DyHead modules to improve the detection accuracy of small seedling targets. Additionally, an image weighting strategy was employed during training to address sample imbalance issues and further improve detection accuracy, especially for occluded seedlings. Subsequently, a framework incorporating sliced-assisted inference facilitated the detection of ratoon sugarcane seedlings in large-scale field images by using the trained model. Finally, a row recognition algorithm based on an improved DBSCAN clustering algorithm and PCA fitting algorithm was developed to locate missing seedling positions along crop rows. Experimental results demonstrated that the improved ratoon sugarcane seedling detection model achieved an average detection accuracy of 96.8% on sub-images and recognition precision and recall rates of 94.5% and 91.8%, respectively, on large-scale images, with a detection time of 0.32s. Utilizing the detection coordinates, the row recognition algorithm achieved 100% clustering accuracy, with an average angular error of 0.2455° for fitted row angles, and precision and recall rates of 91.9% and 97.1%, respectively, for missing seedling detection along rows. This method can be applied to intelligent missing seedling localization in large-scale, complex field images of ratoon sugarcane, providing technical support for replanting operations and holding significant implications for extending ratoon lifespan and increasing sugarcane yield.

    參考文獻
    相似文獻
    引證文獻
引用本文

李尚平,鄭創(chuàng)銳,文春明,李凱華.基于無人機RGB圖像與改進YOLO v5s的宿根蔗缺苗定位方法[J].農(nóng)業(yè)機械學報,2024,55(12):57-70. LI Shangping, ZHENG Chuangrui, WEN Chunming, LI Kaihua. Method for Locating Missing Ratoon Sugarcane Seedlings Based on RGB Images from Unmanned Aerial Vehicles and Improve YOLO v5s[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(12):57-70.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-04-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-12-10
  • 出版日期:
文章二維碼