ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于多級(jí)視野自適應(yīng)蟻群算法的移動(dòng)機(jī)器人路徑規(guī)劃
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2023YFB3406500)和國(guó)家自然科學(xué)基金項(xiàng)目(51975499)


Mobile Robot Path Planning Based on Multi-level Field of View Adaptive Ant Colony Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)傳統(tǒng)蟻群算法(Ant colony optimization,,ACO)在應(yīng)用于移動(dòng)機(jī)器人路徑規(guī)劃時(shí)存在優(yōu)化能力差,,易于死鎖,搜索效率低等問題,,提出一種多級(jí)視野自適應(yīng)蟻群(Multilevel field of view adaptive ant colony optimization,,MLFVAACO)算法。首先在ACO的基礎(chǔ)上依次擴(kuò)展2級(jí)視野使得規(guī)劃出的路徑更加平滑,;其次設(shè)計(jì)了自適應(yīng)全局初始信息素更新策略,,既避免了螞蟻在算法初期出現(xiàn)盲目搜索現(xiàn)象又加強(qiáng)了螞蟻選擇可選區(qū)域的指導(dǎo)作用;然后對(duì)算法迭代過程中的死鎖螞蟻進(jìn)行優(yōu)化,,以提高蟻群的利用率和增加搜索解的多樣性,;最后對(duì)螞蟻的狀態(tài)轉(zhuǎn)移規(guī)則進(jìn)行改進(jìn)來避免螞蟻陷入局部最優(yōu)解。通過仿真選取MLFVAACO算法的最優(yōu)參數(shù),,在2種不同復(fù)雜程度的格柵地圖中分別與傳統(tǒng)ACO算法,、改進(jìn)ACO算法和圖搜索算法進(jìn)行對(duì)比,驗(yàn)證MLFVAACO算法的可行性和有效性。仿真結(jié)果表明,,在簡(jiǎn)單與復(fù)雜環(huán)境中,,MLFVAACO算法相較于傳統(tǒng)ACO算法最優(yōu)路徑分別縮短12.74%和4.38%,路徑轉(zhuǎn)折點(diǎn)分別減少50%和63.16%,,螞蟻利用率分別提升99.99%和99.95%,,搜索效率分別提高60.14%和62.17%;相較于改進(jìn)ACO算法和圖搜索算法,,MLFVAACO算法能夠規(guī)劃出路徑平滑度更好的最短路徑,,同時(shí)搜索解的質(zhì)量也更好。這充分驗(yàn)證了MLFVAACO算法在應(yīng)用于移動(dòng)機(jī)器人路徑規(guī)劃時(shí)具有出色的綜合性能,。

    Abstract:

    Aiming at the problems of poor optimization ability, easy deadlock, and low search efficiency of the traditional ant colony optimization (ACO) when applied to mobile robot path planning, a multilevel field of view adaptive ant colony optimization (MLFVAACO) algorithm was proposed. Firstly, on the basis of ACO, the two levels field of view was expanded sequentially to make the planned path smooth. Secondly, an adaptive global initial pheromone update strategy was designed, which not only avoided the blind search phenomenon of ants in the early stage of the algorithm but also strengthened the guiding role of ants in selecting optional areas. Then the deadlock ants in the algorithm iteration process were optimized to improve the utilization of the ant colony and increase the diversity of search solutions. Finally, the state transition rule of ants was improved to prevent ants from falling into the local optimal solution. The optimal parameters of the MLFVAACO algorithm were selected through simulation analysis, and the feasibility and effectiveness of the MLFVAACO algorithm were verified by comparing it with the traditional ACO algorithm, the improved ACO algorithms, and the graph search algorithms, respectively, in two kinds of grid maps with different levels of complexity. The simulation results showed that in simple and complex environments, compared with the traditional ACO algorithm, the optimal path of the MLFVAACO algorithm was shortened by 12.74% and 4.38%, respectively, the turning points of the path were reduced by 50% and 63.16%, respectively, the ant utilization rate was increased by 99.99% and 99.95%, respectively, and the search efficiency was increased by 60.14% and 62.17%, respectively. Compared with the improved ACO algorithms and the graph search algorithms, MLFVAACO algorithm can plan the shortest path with better path smoothness, while the quality of the search solutions was also better. This fully validated the excellent performance of MLFVAACO algorithm when applied to mobile robot path planning.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

許建民,鄧冬冬,宋雷,楊煒.基于多級(jí)視野自適應(yīng)蟻群算法的移動(dòng)機(jī)器人路徑規(guī)劃[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(11):475-485. XU Jianmin, DENG Dongdong, SONG Lei, YANG Wei. Mobile Robot Path Planning Based on Multi-level Field of View Adaptive Ant Colony Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(11):475-485.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-12-29
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-11-10
  • 出版日期:
文章二維碼