ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進算法融合與切換的采摘機械臂路徑動態(tài)規(guī)劃
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

河北省重點研發(fā)計劃項目(21321902D)


Dynamic Path Planning for Picking Robot Arm Based on Improved Algorithm Fusion and Switching
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對蘋果采摘任務中因自然環(huán)境復雜造成的機械臂路徑規(guī)劃時間長,、效率低,、成功率低等問題,提出一種改進的融合切換路徑動態(tài)規(guī)劃算法,。該算法以RRT算法為基礎,,引入動態(tài)閾值的目標偏置采樣策略與人工勢場法,通過引力場與斥力場改變新節(jié)點的生成位置,增加采樣的目的性并提高收斂速度,;在斥力勢場系數(shù)中引入相對距離,,通過與目標點之間的距離來克服目標不可達的問題;為增強算法的魯棒性,,設定閾值劃分區(qū)域空間,,根據(jù)當前節(jié)點所在位置動態(tài)切換至FGA-RRT(Failure-guided adaptive sampling region RRT algorithm)算法搜索,解決狹窄通道的問題,,提高規(guī)劃成功率,;基于貪心算法對所得路徑樹進行優(yōu)化處理,去除冗余節(jié)點,,進一步縮短路徑長度并優(yōu)化路徑平滑度,,保證采摘機械臂運動的平穩(wěn)性。分別對RRT算法,、RRT*算法,、GB-RRT算法、普通融合算法和改進的融合切換算法,,在簡單障礙,、狹窄通道、復雜障礙以及簡單三維空間等不同環(huán)境中進行仿真分析,,結(jié)果表明:改進的融合切換算法在不同環(huán)境中都具有良好的適應性,,規(guī)劃效率高,迭代次數(shù)少,,路徑質(zhì)量高,。基于林間蘋果園生長環(huán)境,,搭建6自由度機械臂仿真實驗室環(huán)境,,進行避障采摘路徑規(guī)劃試驗,改進的融合切換算法采摘效率比RRT算法提升74.74%,,路徑長度減少32.03%,,采摘成功率提高8個百分點。試驗結(jié)果表明本文算法在多變的蘋果采摘場景中有更強的搜索能力,。

    Abstract:

    Aiming at the issues such as prolonged path planning time, low efficiency and poor success rate of the picking manipulator in the apple picking task as a consequence of the complex natural picking environment, an improved fusion and switching path dynamic planning algorithm was proposed. The algorithm introduced a dynamic threshold goal bias sampling strategy and artificial potential field to alter the generation position of new nodes, increasing the purposiveness of sampling and improving convergence speed. A relative distance was incorporated into the repulsive potential field coefficient to overcome the problem of unreachable targets by considering the distance to the goal. To enhance the algorithm’s robustness, a threshold was set to partition the spatial region, dynamically switching to the failure-guided adaptive sampling region RRT algorithm (FGA-RRT) based on the current node expansion state to address narrow passage issues and increase planning success rates. The greedy algorithm was utilized to optimize the resulting path tree, removing redundant nodes, further shortening the path length, and optimizing path smoothness to ensure the stable movement of the picking robot arm. Simulation experiments were conducted for the RRT algorithm, RRT* algorithm, GB-RRT algorithm, common fusion algorithm and the improved fusion and switching algorithm respectively in simple obstacles, narrow channels, complex obstacles and simple three-dimensional spaces. The results showed that the improved fusion and switching algorithm had good adaptability in different environments, with high planning efficiency, few iterations and high path quality. Based on the established 6-DOF robot arm motion planning simulation environment and laboratory environment, obstacle avoidance picking tests were conducted. The improved hybrid switching algorithm’s picking efficiency was increased by 74.74%, path length was decreased by 32.03%, and picking success rate was improved by 8 percentage points compared with that of the RRT algorithm. The experimental results demonstrated that the proposed algorithm had stronger search capabilities in apple-picking scenarios, providing a reference for improving the operational efficiency of picking robot arms.

    參考文獻
    相似文獻
    引證文獻
引用本文

李娜,高笑,楊磊,姜海勇,張立杰,陳廣毅.基于改進算法融合與切換的采摘機械臂路徑動態(tài)規(guī)劃[J].農(nóng)業(yè)機械學報,2024,55(11):221-230,,272. LI Na, GAO Xiao, YANG Lei, JIANG Haiyong, ZHANG Lijie, CHEN Guangyi. Dynamic Path Planning for Picking Robot Arm Based on Improved Algorithm Fusion and Switching[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(11):221-230,272.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-05-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-11-10
  • 出版日期:
文章二維碼