ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于輕量化MLCE-RTMDet的人工去雄后玉米雄穗檢測(cè)算法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD1900701),、黑龍江省“揭榜掛帥”科技攻關(guān)項(xiàng)目(20212XJ05A02),、北京市農(nóng)林科學(xué)院科技創(chuàng)新能力建設(shè)專項(xiàng)(KJCX20230429)、國(guó)家自然科學(xué)基金項(xiàng)目(42377341)和陜西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2023-YBNY-217)


Maize Tassel Detection Algorithm after Artificial Emasculation Based on Lightweight MLCE-RTMDet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    玉米制種田遺漏雄穗檢測(cè)是實(shí)現(xiàn)人工去雄質(zhì)量評(píng)估的關(guān)鍵。針對(duì)現(xiàn)有玉米雄穗檢測(cè)模型面臨的參數(shù)量大,、檢測(cè)效率低和精度差等問(wèn)題,,提出一種基于RTMDet-tiny的輕量級(jí)雄穗檢測(cè)模型MLCE-RTMDet。模型采用輕量級(jí)的MobileNetv3作為主干特征提取網(wǎng)絡(luò),,有效降低模型參數(shù)量,;在特征提取網(wǎng)絡(luò)中引入CBAM注意力模塊,增強(qiáng)對(duì)雄穗目標(biāo)的多尺度特征提取能力,,克服引入輕量化網(wǎng)絡(luò)可能帶來(lái)的性能損失,。同時(shí),使用EIOU Loss替代GIOU Loss,,進(jìn)一步提高雄穗檢測(cè)精度,。在自建數(shù)據(jù)集上的試驗(yàn)表明,改進(jìn)的MLCE-RTMDet模型參數(shù)量縮減至3.9×106,,浮點(diǎn)運(yùn)算數(shù)降至5.3×109,,參數(shù)量和浮點(diǎn)運(yùn)算數(shù)分別比原模型減少20.4%和34.6%。測(cè)試集上模型平均精度均值增至92.2%,,較原模型提高1.2個(gè)百分點(diǎn),;同時(shí),推理速度達(dá)到41.9f/s,,增幅達(dá)12.6%,。與YOLO v6、YOLO v8,、YOLO X等當(dāng)前主流模型相比,,MLCE-RTMDet表現(xiàn)出更好的綜合檢測(cè)性能。改進(jìn)后的高精度輕量化模型可為實(shí)現(xiàn)玉米制種田人工去雄后的遺漏雄穗檢測(cè)提供技術(shù)支撐,。

    Abstract:

    Detecting missed tassels is crucial for assessing the quality of aritificial emasculation in maize seed production fields. Aiming at the problems of large parameter quantity, low detection efficiency and poor accuracy of the existing maize tassel detection models, a lightweight tassel detection model based on RTMDet-tiny, named MLCE-RTMDet, was proposed. The model used the lightweight MobileNetv3 as the feature extraction network to effectively reduce the model parameters. The CBAM attention module in the neck network was integrated to enhance multi-scale feature extraction capability for tassel objects, overcoming potential performance losses caused by the lightweight networks. Simultaneously, the EIOU Loss was adopted, replacing the GIOU Loss, which further improved the accuracy of tassel detection. Experiments on the self-built dataset showed that the improved MLCE-RTMDet model reduced model parameters to 3.9×106, while the number of floating point operations was lowered to 5.3×109, resulting in a 20.4% reduction in parameters and a 34.6% decrease in computational complexity compared with that of the original model. When evaluated on the test set, the model’s mean average precision (mAP) reached 92.2%, reflecting a 1.2 percentage points improvement over the original model. The inference speed was increased to 41.9 frames per second (FPS), representing a 12.6% enhancement. Compared with current mainstream detection models such as YOLO v6, YOLO v8, and YOLO X, MLCE-RTMDet demonstrated superior overall detection performance. The improved high-accuracy lightweight model offered technical support for tassel re-inspection and emasculation quality assessment in maize seed production fields following artificial emasculation.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李金瑞,杜建軍,張宏鳴,郭新宇,趙春江.基于輕量化MLCE-RTMDet的人工去雄后玉米雄穗檢測(cè)算法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(11):184-192,,503. LI Jinrui, DU Jianjun, ZHANG Hongming, GUO Xinyu, ZHAO Chunjiang. Maize Tassel Detection Algorithm after Artificial Emasculation Based on Lightweight MLCE-RTMDet[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(11):184-192,503.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-12-27
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-11-10
  • 出版日期:
文章二維碼