ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于YOLO v8和CycleGAN的紅掌植株表型參數(shù)自動提取方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

上海市科技創(chuàng)新計劃項目(20dz1203800)


Automatic Extraction of Phenotypic Parameters from Anthurium andraeanum Linden Based on YOLO v8 and CycleGAN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    植株表型參數(shù)是描述植物形態(tài)、結(jié)構(gòu)和生理特征的定量化指標(biāo),,可揭示植物生長規(guī)律,,以及與環(huán)境因素之間的關(guān)系。現(xiàn)有的人工測量和激光雷達點云植株表型參數(shù)提取方法存在數(shù)據(jù)誤差大,、易損傷植株,、成本高和數(shù)據(jù)量大等問題。為此,,本文提出了一種基于YOLO v8和CycleGAN的紅掌植株表型參數(shù)自動提取方法,,利用雙重注意力機制CBAM改進YOLO v8,提高模型特征提取能力,,對紅掌植株葉片進行檢測與分割,;通過Grabcut算法去除分割后圖像背景區(qū)域特征,并利用VGG模型對其進行分類,,分出完整型紅掌植株葉片和缺失型紅掌植株葉片,;在CycleGAN的生成器中引入雙重注意力機制和特征金字塔,提高模型多尺度特征的提取能力,,引入SmoohL1損失函數(shù),,提升模型穩(wěn)定性,對缺失型紅掌植株葉片進行修復(fù),;提出一種表型參數(shù)提取算法(Phenotypic parameters extraction algorithms,,PPEA),實現(xiàn)對紅掌植株葉長,、葉寬和葉面積的自動提取,。以650幅自建數(shù)據(jù)集為例,對上述方法進行了比較與分析,,實驗結(jié)果證明,,本文方法在紅掌植株表型參數(shù)自動提取方面具有良好的效果。

    Abstract:

    Phenotypic parameters of plants are quantitatively indicated, describing the morphology, structure, and physiological characteristics of plants, unveiling the growth patterns and relationships with environmental factors. Issues such as significant data errors, plant damage, high costs, and extensive data volume were exhibited by existing manual measurement and laser scanning-based methods for extracting plant phenotypic parameters. Therefore, an automatic extraction method for phenotypic parameters of Anthurium andraeanum Linden plants based on YOLO v8 and CycleGAN was proposed. The method included the follows: YOLO v8 was enhanced with the convolutional block attention module to improve the model’s feature extraction capabilities for detecting and segmenting Anthurium andraeanum Linden leaves;the Grabcut algorithm was utilized to eliminate background features from segmented images, and the VGG model was employed for classification to distinguish intact and missing Anthurium andraeanum Linden leaves;the convolutional block attention module and feature pyramid network were introduced into the CycleGAN generator to enhance multi-scale feature extraction capabilities, incorporating the SmoothL1 loss function to enhance model stability and repair missing Anthurium andraeanum Linden leaves;a phenotypic parameters extraction algorithm (PPEA) was proposed to automatically extract leaf length, leaf width, and leaf area of Anthurium andraeanum Linden plants. The proposed methods were compared and analyzed by using a dataset of 650 self-collected images. Experimental results demonstrated the effectiveness of the proposed approach in automatically extracting phenotypic parameters of Anthurium andraeanum Linden plants.

    參考文獻
    相似文獻
    引證文獻
引用本文

盧鵬,孫天文,陳明,王振華,鄭宗生.基于YOLO v8和CycleGAN的紅掌植株表型參數(shù)自動提取方法[J].農(nóng)業(yè)機械學(xué)報,2024,55(11):154-159,,319. LU Peng, SUN Tianwen, CHEN Ming, WANG Zhenhua, ZHENG Zongsheng. Automatic Extraction of Phenotypic Parameters from Anthurium andraeanum Linden Based on YOLO v8 and CycleGAN[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(11):154-159,,319.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-12-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-11-10
  • 出版日期:
文章二維碼