ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于MobileViT-CBAM-BiLSTM的開放式養(yǎng)殖環(huán)境魚群攝食強度分類模型
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(62373286,、62175037)和湖州市重點研發(fā)計劃農(nóng)業(yè)“雙強”專項(2022ZD2060)


Classification Model of Fish Feeding Intensity Based on MobileViT-CBAM-BiLSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    魚群攝食的精準投喂技術(shù)是實現(xiàn)智慧化水產(chǎn)養(yǎng)殖的一項關(guān)鍵技術(shù),。大多數(shù)精準投喂模型都是基于水質(zhì)較清晰的室內(nèi)養(yǎng)殖池,不太適用于開放式養(yǎng)殖環(huán)境,。本研究通過水上視角采集構(gòu)建了一套開放式池塘數(shù)據(jù)集,,并對數(shù)據(jù)集進行數(shù)據(jù)增強增加其多樣性,然后在輕量化神經(jīng)網(wǎng)絡MobileViT基礎上,,將CBAM注意力模塊與MV2模塊結(jié)合設計了CBAM-MV2模塊,,并嵌入BiLSTM循環(huán)神經(jīng)網(wǎng)絡用于識別分類,提出改進的MobileViT-CBAM-BiLSTM模型,,提高了模型預測能力,、魯棒性和泛化性能,實現(xiàn)了魚群攝食行為的三分類,。實驗結(jié)果顯示,,改進后MobileViT在采集的視頻幀數(shù)據(jù)集上明顯優(yōu)于改進前的MobileViT,準確率98.61%,,宏F1值達98.79%,,相對于原始MobileViT準確率提高6.33個百分點,,宏F1值提高6.75個百分點。

    Abstract:

    Precise feeding technology for fish ingestion is a key technology to achieve intelligent aquaculture. However, most of the precise feeding model is based on indoor aquaculture ponds with clear water quality, which are not suitable for outdoor open farming environments. In view of the actual situation, a set of detailed open pond dataset through water perspective acquisition was constructed, and the dataset was augmented to increase its diversity, and then the BiLSTM bidirectional recurrent neural network was embeded on the basis of the lightweight neural network MobileViT, so as to improve the memory ability of the model for video sequence data in a long period of time, and the CBAM attention module was combined with the MV2 module to design the CBAM-MV2 module, and then the CBAM-MV2 module was added to different layers of the model for experiments to obtain the most reasonable improvement scheme. Finally, an improved MobileViT-CBAM-BiLSTM fish feeding behavior classification model was proposed, which improved the prediction ability, robustness and generalization performance of the model, and realized the three classification of fish feeding behavior. The experimental results showed that the improved MobileViT was significantly better than previous in the collected video frame dataset, with an accuracy of 98.61%, 98.79% for Macro-F1, which was 6.33 percentage points for accuracy, 6.75 percentage points for Macro-F1 compared with the original MobileViT.

    參考文獻
    相似文獻
    引證文獻
引用本文

徐立鴻,黃志尊,龍偉,蔣林華,童欣.基于MobileViT-CBAM-BiLSTM的開放式養(yǎng)殖環(huán)境魚群攝食強度分類模型[J].農(nóng)業(yè)機械學報,2024,55(11):147-153. XU Lihong, HUANG Zhizun, LONG Wei, JIANG Linhua, TONG Xin. Classification Model of Fish Feeding Intensity Based on MobileViT-CBAM-BiLSTM[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(11):147-153.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-01-08
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-11-10
  • 出版日期:
文章二維碼