ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)可變形卷積的FDC-YOLO v8水下生物目標(biāo)檢測(cè)方法研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(41776142)


Research on FDC-YOLO v8 Underwater Biological Object Detection Method Improved by Deformable Convolution
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    水下生物目標(biāo)檢測(cè)是實(shí)現(xiàn)水下機(jī)器人自動(dòng)化捕撈的關(guān)鍵性技術(shù),。針對(duì)水下生物目標(biāo)檢測(cè)任務(wù)中存在的目標(biāo)重疊、遮擋以及目標(biāo)尺度小而導(dǎo)致的誤檢,、漏檢等問(wèn)題,,提出了一種基于改進(jìn)YOLO v8n的水下生物目標(biāo)檢測(cè)算法FDC-YOLO v8。首先,,在主干網(wǎng)絡(luò)中使用融合可變形卷積網(wǎng)絡(luò)的FDC模塊,,以增強(qiáng)模型特征提取能力,提升其提取特征的豐富度,。其次,,引入融合分?jǐn)?shù)階傅里葉變換和空間注意力機(jī)制的FrSAConv模塊,進(jìn)一步分離多樣目標(biāo)特征,,增強(qiáng)模型對(duì)多種特征的感知能力,。最后,引入Wise-IoU損失函數(shù)作為模型邊界框損失函數(shù),,以更好地解決目標(biāo)不平衡以及尺度差異的問(wèn)題,。使用RUIE數(shù)據(jù)集進(jìn)行實(shí)驗(yàn),水下生物包括海膽,、海星,、海參、扇貝,。實(shí)驗(yàn)結(jié)果表明,,改進(jìn)后的FDC-YOLO v8的平均精度均值達(dá)到85.3%,較基準(zhǔn)模型提升2.6個(gè)百分點(diǎn),,推理速度達(dá)到769f/s,,在目標(biāo)重疊、遮擋以及小尺度目標(biāo)的水下生物目標(biāo)檢測(cè)中有更好的表現(xiàn),。

    Abstract:

    Underwater biological target detection is a crucial technology for achieving automation in underwater robotic fishing. Aiming to address issues such as object overlap, occlusion, and false detections, missed detections caused by small object scales in underwater biological object detection tasks, an underwater biological object detection algorithm, FDC-YOLO v8 was proposed based on an improved YOLO v8n. Firstly, the FDC module was incorporated, which utilized deformable convolution networks in the backbone network to enhance the model’s feature extraction capability and enrich the diversity of extracted features. Secondly, the FrSAConv module, integrating fractional Fourier transform and spatial attention mechanism, was introduced to further separate diverse object features and enhance the model’s perceptual ability towards various features. Finally, the Wise-IoU loss function was introduced as the bounding box loss function to better address issues related to object imbalance and scale differences. The experiments were conducted by using the RUIE dataset, which included four types of underwater organisms: echinus, starfish, holothurian, and scallops. Experimental results demonstrated that the improved FDC-YOLO v8 achieved an mAP of 85.3%, a 2.6 percentage points improvement over the baseline model. The inference speed can reach 769 frames per second, showcasing better performance in underwater object detection of marine organisms with challenged such as object overlap, occlusion, and small-scale objects.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

袁紅春,李春橋.基于改進(jìn)可變形卷積的FDC-YOLO v8水下生物目標(biāo)檢測(cè)方法研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(11):140-146. YUAN Hongchun, LI Chunqiao. Research on FDC-YOLO v8 Underwater Biological Object Detection Method Improved by Deformable Convolution[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(11):140-146.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-01-31
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-11-10
  • 出版日期:
文章二維碼