ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進YOLO v7的鮭魚檢測模型輕量化研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2022YFD2401201),、廣東省海洋經濟發(fā)展(海洋六大產業(yè))專項資金項目(GDNRC[2023]33),、南方海洋科學與工程廣東省實驗室(湛江)項目(011Z23002)和湛江灣實驗室人才團隊引進科研項目(ZJW-2023-05)


Lightweight Salmon Detection Model Based on Improved YOLO v7
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為實現水下復雜環(huán)境下鮭魚的快速準確識別,提出一種基于YOLO v7輕量化的鮭魚檢測模型YOLO v7-CSMRep。首先,,采用Stem模塊合并Backbone層的前4個卷積操作,,有效降低了模型計算量。其次,,使用多尺度重參數化(Multidirectional reparameterization, MRep)模塊替代YOLO v7的ELAN和ELAN-H模塊,,增強了單向特征提取能力,同時大幅減少參數量和計算量,。最后,,在Backbone層末端集成卷積塊注意力模塊(Convolutional block attention module, CBAM),提升網絡空間和通道特征提取能力,。試驗結果表明,,改進后模型內存占用量、參數量和計算量分別降低4.28%,、5.29%,、31.30%,F1值,、mAP0.5分別提高0.5,、0.7個百分點,分別達到93.1%,、97.1%,,幀率提高15.41%,達到140.8f/s,。對比YOLO v5s、YOLO v6s,、YOLO v7,、YOLO v7-tiny、YOLO v8s模型,,mAP0.5分別提高1.0,、2.0、0.7,、0.8,、1.2個百分點。因此,,本文提出的方法能夠快速而準確地識別鮭魚,,可為深遠海養(yǎng)殖生物量監(jiān)測提供技術支撐。

    Abstract:

    In order to achieve rapid and accurate identification of salmon in complex underwater environments, a lightweight salmon detection model, YOLO v7-CSMRep, was proposed based on YOLO v7. Firstly, by adopting the Stem module, the first four convolutional operations in the backbone layer were merged into an efficient convolutional operation, reducing the computational load of the model. Secondly, the ELAN and ELAN-H modules of the YOLO v7 network were replaced with the multi-directional reparameterization (MRep) module, which enhanced the one-way feature extraction capability while greatly reducing parameters and calculations. Finally, at the end of the backbone layer, the convolutional block attention module (CBAM) was integrated to enhance the network’s spatial and channel feature extraction capabilities. The experimental results showed that the improved model’s volume, parameter count, and computational load were reduced by 4.28%, 5.29% and 31.30%, respectively. The F1 score and mAP0.5 were increased by 0.5 and 0.7 percentage points, and reached 93.1% and 97.1%, respectively. Additionally, the frame rate was increased by 15.41%, and reached 140.8f/s. Compared with that of YOLO v5s, YOLO v6s, YOLO v7, YOLO v7-tiny, and YOLO v8s models, the mAP0.5 was improved by 1.0, 2.0, 0.7, 0.8, and 1.2 percentage points, respectively. Therefore, the method proposed can rapidly and accurately identify salmon and provide technical support for biomass monitoring in deep-sea aquaculture.

    參考文獻
    相似文獻
    引證文獻
引用本文

鄭榮才,譚鼎文,徐青,陳大勇,元軻新.基于改進YOLO v7的鮭魚檢測模型輕量化研究[J].農業(yè)機械學報,2024,55(11):132-139. ZHENG Rongcai, TAN Dingwen, XU Qing, CHEN Dayong, YUAN Kexin. Lightweight Salmon Detection Model Based on Improved YOLO v7[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(11):132-139.

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-02-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-11-10
  • 出版日期:
文章二維碼