ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于圖像增強與GC-YOLO v5s的水下環(huán)境河蟹識別輕量化模型研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

上海市崇明區(qū)農(nóng)業(yè)科創(chuàng)項目(2021CNKC-05-06)和上海市水產(chǎn)動物良種創(chuàng)制與綠色養(yǎng)殖協(xié)同創(chuàng)新中心項目(2021科技02-12)


Lightweight Model for River Crab Detection Based on Image Enhancement and Improved YOLO v5s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    利用機器視覺技術(shù)識別水下河蟹目標是實現(xiàn)河蟹養(yǎng)殖裝備智能化的有效途徑之一,。針對水下環(huán)境目標識別困難、河蟹包含特征信息少,、主流的目標檢測模型復雜度高等問題,,在YOLO v5s的基礎上提出了一種適用于水下環(huán)境的輕量級河蟹識別模型GC-YOLO v5s(GhostNetV2-CBAM-YOLO v5s)。利用改進的圖像增強算法對水下河蟹圖像進行預處理以改善其質(zhì)量,;為降低模型復雜度,,提出了基于 GhostNetV2的G3模塊以改進模型的特征提取網(wǎng)絡,并利用幻影卷積進一步輕量化模型,;為了優(yōu)化模型的河蟹特征學習能力,,在Neck層和Head層之間引入卷積塊注意力模塊(Convolution block attention module,CBAM),。實驗結(jié)果表明,該模型測試集的平均精度均值(Mean average precision,,mAP),、召回率和精確率分別為95.61%、97.03%和96.94%,,較YOLO v5s分別提升2.80,、2.25、2.28個百分點,;而GC-YOLO v5s的參數(shù)量,、浮點運算量和模型內(nèi)存占用量僅為YOLO v5s的69.1%、56.3%和58.3%,。通過實驗對比,,該模型在識別精度和模型復雜度上優(yōu)于其他主流目標檢測模型;識別速度僅次于YOLO v5s,,可達到104f/s,。

    Abstract:

    Using machine vision technology to identify underwater crab targets is one of the effective ways to achieve intelligent crab farming equipment. However, river crab detection methods face challenges in the difficulty of target detection in underwater environments, limited feature information and high complexity of mainstream target detection models. To solve these challenges, a lightweight river crab detection model GC-YOLO v5s (GhostNetV2-CBAM-YOLO v5s) was proposed. These specific enhancements were as follows: an improved image enhancement algorithm was used to preprocess underwater crab images to improve the detection accuracy;in order to reduce model complexity, a G3 module based on GhostNetV2 was proposed to improve the feature extraction network of the model, and Ghost convolution was used to further lightweight the model;the convolution block attention module (CBAM) was introduced to solve the challenge of extracting deep features within underwater environments, which were integrated into the feature extraction network. The experimental results demonstrated the improved model’s mAP50, recall, and precision on the test set, reaching 95.61%, 97.03% and 96.94%, respectively. These metrics displayed enhancements of 2.80 percentage points, 2.25 percentage points and 2.28 percentage points compared with the baseline. Moreover, GC-YOLO v5s parameters, computations, and model size were only 69.1%, 56.3%, and 58.3% of YOLO v5s respectively. Comparative trials against mainstream object detection algorithms showcased the superiority in accuracy and model complexity. While slightly trailing YOLO v5s in detect speed, GC-YOLO achieved 104f/s.

    參考文獻
    相似文獻
    引證文獻
引用本文

張錚,魯祥,胡慶松.基于圖像增強與GC-YOLO v5s的水下環(huán)境河蟹識別輕量化模型研究[J].農(nóng)業(yè)機械學報,2024,55(11):124-131,374. ZHANG Zheng, LU Xiang, HU Qingsong. Lightweight Model for River Crab Detection Based on Image Enhancement and Improved YOLO v5s[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(11):124-131,,374.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-01-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-11-10
  • 出版日期:
文章二維碼