ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進YOLO-MAO檢測框架的籠養(yǎng)白羽肉雞行為檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家科技創(chuàng)新2030—新一代人工智能重大項目(2021ZD0113701)


Behavior Detection Algorithm for Caged White-feather Broilers Based on Improved YOLO Detection Framework
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    在大規(guī)模的肉雞養(yǎng)殖場中,,肉雞行為通常由飼養(yǎng)員或?qū)I(yè)獸醫(yī)觀察和分析,,以確定肉雞健康狀況和養(yǎng)殖環(huán)境狀態(tài),。然而這種方法耗時且主觀,。此外,在籠養(yǎng)環(huán)境中,,由于雞只的高密度和嚴重的互相遮擋,,行為的視覺特征不明顯,傳統(tǒng)的檢測算法不能準確地識別雞只的行為特征,。因此,,本文提出一種改進的籠養(yǎng)白羽肉雞行為檢測的目標檢測算法。所提出的算法由2個模塊組成:多尺度細節(jié)特征融合模塊(MDF)和目標關系推理模塊(ORI),。多尺度細節(jié)特征模塊充分利用和提取網(wǎng)絡淺層特征映射中包含的多尺度細節(jié)特征,,并將它們?nèi)诤系截撠熛鄳叨葯z測的特征映射中,實現(xiàn)細節(jié)特征的有效傳輸和補充,。目標關系推理模塊充分利用對象之間的位置關系進行推理和判斷,使模型能更充分地利用對象之間的潛在關系來輔助檢測,。為驗證所提出算法的有效性,,在目標檢測領域具有權威性的COCO公共數(shù)據(jù)集以及真實的大規(guī)?;\養(yǎng)白羽肉雞養(yǎng)殖環(huán)境中自建的行為檢測數(shù)據(jù)集上進行大量對比實驗。實驗結果表明,,與其他最先進的模型相比,,本文所提出的改進算法在COCO數(shù)據(jù)集和自建數(shù)據(jù)集上均達到最佳識別準確率;對喂食,、飲水,、移動和張嘴等影響肉雞健康狀況較為重要的行為進行檢測,識別精度分別達99.6%,、98.7%,、99.2%和98.3%。

    Abstract:

    In large-scale broiler farms, the behavior of broilers is usually observed and analyzed by feeders or professional veterinarians to determine their health status and breeding environment status. However, this method is time-consuming and subjective. In addition, in caged environments, due to the high density of chickens and serious mutual occlusion, the visual features of behavior are not obvious, and traditional detection algorithms cannot accurately identify the behavior characteristics of chickens. Therefore, an improved object detection algorithm for behavior detection of caged white-feather broilers was proposed. The proposed algorithm consisted of two modules: multi-scale detail feature fusion module (MDF) and object relation inference module (ORI). The multi-scale detail feature module fully utilized and extracted the multi-scale detail features contained in the shallow feature maps of the feature extraction network, and integrated them into the corresponding feature maps responsible for detection at the corresponding scale, achieving effective transmission and supplementation of detail features. The relational reasoning module fully utilized the positional relationships between objects for inference and judgment, enabling the model to more fully utilize the potential relationships between objects to assist in detection. To verify the effectiveness of the proposed algorithm, a large number of comparative experiments on both authoritative public datasets in the field of object detection and self-built behavior detection datasets in real large-scale caged white-feather broiler breeding environments was conducted. The experimental results showed that the proposed improved algorithm achieved the best detection accuracy compared with other state-of-the-art models, both in the COCO dataset and the self-built dataset. For the detection of behaviors such as feeding, drinking, moving, and opening the mouth, which were crucial for the health status of broiler chickens, the algorithm achieved accuracy rates of 99.6%, 98.7%, 99.2%, and 98.3% respectively.

    參考文獻
    相似文獻
    引證文獻
引用本文

夏元天,寇旭鵬,薛洪成,李林.基于改進YOLO-MAO檢測框架的籠養(yǎng)白羽肉雞行為檢測方法[J].農(nóng)業(yè)機械學報,2024,55(11):103-111. XIA Yuantian, KOU Xupeng, XUE Hongcheng, LI Lin. Behavior Detection Algorithm for Caged White-feather Broilers Based on Improved YOLO Detection Framework[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(11):103-111.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-09-08
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-11-10
  • 出版日期:
文章二維碼