ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLO v7-Pose的牛臉關(guān)鍵點檢測與姿態(tài)識別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

安徽省自然科學(xué)基金項目(2308085MC103)和安徽省教育廳高校項目(KJ2021A0024)


Cow Face Keypoint Detection and Pose Recognition Based on Improved YOLO v7-Pose
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    奶牛臉部關(guān)鍵點檢測在牛場智能化中發(fā)揮著重要的作用,它可以幫助實現(xiàn)牛臉識別,、牛臉對齊,、頭部動作檢測與行為識別等。針對目前奶牛養(yǎng)殖環(huán)境中存在牛臉遮擋,、弱光照等問題,,提出了一種改進(jìn)的YOLO v7-Pose網(wǎng)絡(luò)模型的算法,可用于牛臉關(guān)鍵點檢測和頭部姿態(tài)識別,。首先通過網(wǎng)絡(luò)相機在牛場獲取奶牛臉部圖像并構(gòu)建數(shù)據(jù)集,。其次,在YOLO v7-Pose網(wǎng)絡(luò)模型中引入SPPFCSPCL結(jié)構(gòu),,以提高奶牛臉部關(guān)鍵點的特征提取能力,;將關(guān)鍵點檢測的損失函數(shù)OKS替換為WingLoss損失函數(shù),增加奶牛臉部關(guān)鍵點的檢測精度,;最后,,使用L1范數(shù)對改進(jìn)的模型剪枝,使改進(jìn)后的網(wǎng)絡(luò)模型參數(shù)量降低,。試驗結(jié)果表明:改進(jìn)模型YOLO v7-SCLWL-Pose檢測牛臉關(guān)鍵點較原模型AP提升5個百分點,,AP0.5提升2.7個百分點,改進(jìn)后模型內(nèi)存占用量僅為106.7MB,,減少33.6%。將本文關(guān)鍵點檢測用于姿態(tài)識別,,試驗結(jié)果對抬頭和低頭等動作的識別準(zhǔn)確率達(dá)到95.5%和86.5%,。本研究為牧場奶牛行為識別提供了支撐技術(shù)。

    Abstract:

    Facial keypoint detection in dairy cows plays a crucial role in the automation of cow farms. It aids in cow face recognition, face alignment, head movement detection, and behavior recognition. In view of the problems of cow face occlusion and weak light in the current dairy farming environment, an improved algorithm of YOLO v7-Pose network model was proposed, which can be used for keypoint detection and head pose recognition of cow face. Firstly, dairy cow facial images were collected from cow farms by using network cameras and a dataset was constructed. Secondly, the SPPFCSPCL structure was integrated into the YOLO v7-Pose network model to enhance its feature extraction capabilities for cow facial keypoints. The WingLoss loss function replaced the OKS loss function for keypoint detection, thereby improving the accuracy of cow facial keypoint detection. Finally, L1 regularization was applied to prune the improved model, reducing the number of network parameters. The experimental results showed that the cow face keypoint detection of improved model YOLO v7-SCLWL-Pose was improved by 5 percentage points and AP0.5 was improved by 2.7 percentage points compared with the original model AP, and the memory occupation of the improved model was only 106.7MB, which was reduced by 33.6%. The keypoint detection was applied to pose recognition, and the experimental results showed that the recognition accuracy of the motions of looking up and looking down reached 95.5% and 86.5%. This research can provide support technology for behavior recognition in dairy cows on farms.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

黃小平,侯現(xiàn)坤,郭陽陽,鄭寰宇,豆子豪,劉夢藝,趙晉陵.基于改進(jìn)YOLO v7-Pose的牛臉關(guān)鍵點檢測與姿態(tài)識別方法[J].農(nóng)業(yè)機械學(xué)報,2024,55(11):84-92,,102. HUANG Xiaoping, HOU Xiankun, GUO Yangyang, ZHENG Huanyu, DOU Zihao, LIU Mengyi, ZHAO Jinling. Cow Face Keypoint Detection and Pose Recognition Based on Improved YOLO v7-Pose[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(11):84-92,,102.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-08-19
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-11-10
  • 出版日期:
文章二維碼