ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于YOLO v8-GSGF模型的葡萄病害識(shí)別方法研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

山東省自然科學(xué)基金項(xiàng)目(ZR2022MC152)、中央引導(dǎo)地方科技發(fā)展專項(xiàng)計(jì)劃項(xiàng)目(23-1-3-6-zyyd-nsh)和山東省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2023TZXD023)


Grape Disease Identification Method Based on YOLO v8-GSGF Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為進(jìn)一步提高葡萄病害識(shí)別精度及速度,,本文對(duì)YOLO v8模型進(jìn)行了改進(jìn),。首先,引入GhostNetV2主干特征提取網(wǎng)絡(luò),,提高模型特征提取能力和識(shí)別性能,。其次,嵌入SPPFCSPC金字塔池化,,在保持感受野不變的情況下取得速度上的提升,。再次,添加GAM-Attention注意力機(jī)制,,減小信息縮減并放大特征信息,,加快識(shí)別速度。最后,,使用Focal-EIoU作為損失函數(shù),,使檢測(cè)模型邊界框回歸性能得到提升,最終形成葡萄葉片病害識(shí)別模型YOLO v8-GSGF(YOLO v8+GhostNetV2+SPPFCSPC+GAM-Attention+Focal-EIoU),。經(jīng)識(shí)別試驗(yàn)驗(yàn)證,YOLO v8-GSGF模型識(shí)別精度可達(dá)97.1%,,推理時(shí)間為45.3ms,,對(duì)各葡萄病害都能做到高精度識(shí)別,。消融試驗(yàn)結(jié)果表明,各項(xiàng)改進(jìn)均對(duì)模型識(shí)別性能有提升效果,,其中,,GhostNetV2主干網(wǎng)絡(luò)對(duì)模型提升效果最為明顯,。YOLO v8-GSGF模型在消融試驗(yàn)中識(shí)別精度可達(dá)98.2%及推理時(shí)間為43.7ms,與原YOLO v8模型相比提升8.6個(gè)百分點(diǎn)及20.4ms,,改進(jìn)效果明顯,,可視化圖更加直觀地證明YOLO v8-GSGF模型可靠以及性能優(yōu)越,。與目前主流識(shí)別模型相比,,YOLO v8-GSGF模型有更好的表現(xiàn),,識(shí)別精度和速度都更優(yōu),,曲線圖也直觀地表明YOLO v8-GSGF模型性能優(yōu)越,,改進(jìn)效果顯著,,能夠滿足葡萄果園病害識(shí)別的需求,。

    Abstract:

    In order to further improve the accuracy and speed of grape disease identification, the YOLO v8 model was improved. Firstly, the GhostNetV2 backbone feature extraction network was introduced to improve the feature extraction ability and recognition performance of the model. Secondly, the SPPFCSPC pyramid pooling was embedded to improve the speed while keeping the receptive field unchanged. Thirdly, the GAM-Attention mechanism was added to reduce the information reduction and amplify the feature information to speed up the recognition. Finally, Focal-EIoU was used as the loss function to improve the bounding box regression performance of the detection model, and finally the grape leaf disease identification model YOLO v8-GSGF was formed. The recognition test verified that the YOLO v8-GSGF model can achieve 97.1% recognition accuracy and 45.3ms inference time, and can achieve high-precision identification of various grape diseases. The results of the ablation test showed that all the improvements had an effect on the recognition performance of the model, and the GhostNetV2 backbone network had the most obvious effect on the model. The YOLO v8-GSGF model can achieve 98.2% recognition accuracy and 43.7ms inference time in the ablation test, which was 8.6 percentage point and 20.4ms higher than that of the original YOLO v8 model. Compared with the current mainstream recognition model, the YOLO v8-GSGF model had better performance, better recognition accuracy and speed, and the curve chart also intuitively showed that the performance of the YOLO v8-GSGF model was superior, and the improvement effect was remarkable, which can meet the needs of grape orchard disease identification and had the potential for practical application.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張惠莉,代晨龍,任景龍,王光遠(yuǎn),滕飛,王東偉.基于YOLO v8-GSGF模型的葡萄病害識(shí)別方法研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(11):75-83. ZHANG Huili, DAI Chenlong, REN Jinglong, WANG Guangyuan, TENG Fei, WANG Dongwei. Grape Disease Identification Method Based on YOLO v8-GSGF Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(11):75-83.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-01-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-11-10
  • 出版日期:
文章二維碼