ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLO v5s的水稻害蟲識別研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(61903126)和河南省科技攻關(guān)項(xiàng)目(212102210503)


Rice Pest Identification Based on Improved YOLO v5s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    水稻害蟲識別時(shí),受稻田環(huán)境影響易出現(xiàn)目標(biāo)被遮擋、與背景顏色相似,、多目標(biāo)相鄰等問題導(dǎo)致識別精度降低。為此本文提出了一種基于改進(jìn)YOLO v5s的水稻害蟲識別模型YOLO v5s-Coordslimneck,,通過替換主干網(wǎng)絡(luò)中的普通卷積為CoordConv,,增強(qiáng)了模型對目標(biāo)位置信息的獲取能力;引入CBAM注意力機(jī)制,,提升了模型對目標(biāo)區(qū)域的關(guān)注度,;采用Slim-neck減少了計(jì)算量并增強(qiáng)了特征處理能力,;引入Soft-NMS算法優(yōu)化相鄰目標(biāo)邊框篩選,減少漏檢,。實(shí)驗(yàn)結(jié)果表明,,改進(jìn)后的YOLO v5s模型在水稻害蟲數(shù)據(jù)集上的平均精度均值達(dá)到94.3%,相比原模型提升3.8個(gè)百分點(diǎn),,比其他主流模型YOLO v3,、YOLO R-CSP、YOLO v7,、YOLO v8s提升1.5,、12.7、13.6,、1.9個(gè)百分點(diǎn),。消融實(shí)驗(yàn)進(jìn)一步驗(yàn)證了改進(jìn)模型中各個(gè)組件的有效性。熱力圖分析也體現(xiàn)了改進(jìn)模型能夠更好地學(xué)習(xí)害蟲特征,。綜上,,本文提出的改進(jìn)YOLO v5s模型在提高水稻害蟲檢測精度方面取得了顯著成效,為防控水稻蟲害提供了一種精確的識別方法,。

    Abstract:

    When identifying rice pests, issues such as targets being obscured, similarity to the background color, and proximity of multiple targets due to the rice field environment can lead to reduced identification accuracy. To address this, a rice pest identification method was proposed based on an improved YOLO v5s. The method enhanced the model’s ability to capture target location information by replacing ordinary convolution in the backbone network with CoordConv. It introduced the CBAM attention mechanism to increase the model’s focus on the target area. The Slim-neck architecture was adopted to enhance feature processing capabilities and reduce computational load. The introduction of the Soft-NMS algorithm optimized the selection of adjacent target bounding boxes, reducing missed detections. Experimental results showed that the improved YOLO v5s model achieved an mAP of 94.3% on the rice pest dataset, which was an increase of 3.8 percentage points over the original model and 1.5, 12.7, 13.6 and 1.9 percentage points higher than that of the other mainstream models such as YOLO v3, YOLO R-CSP, YOLO v7, and YOLO v8s, respectively. Ablation experiments further validated the effectiveness of each component in the improved model. Heat map analysis also demonstrated that the improved model can better learn pest features. In summary, the improved YOLO v5s model proposed achieved significant results in improving the accuracy of rice pest detection, providing a more precise identification method for the prevention and control of rice pests.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王泰華,郭亞州,張家樂,張晨陽.基于改進(jìn)YOLO v5s的水稻害蟲識別研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(11):39-48. WANG Taihua, GUO Yazhou, ZHANG Jiale, ZHANG Chenyang. Rice Pest Identification Based on Improved YOLO v5s[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(11):39-48.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-01-09
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-11-10
  • 出版日期:
文章二維碼