ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于輕量級密集多尺度注意力網(wǎng)絡的小麥葉部銹病識別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

安徽省自然科學基金項目(2208085MC60),、安徽省省廳高??蒲杏媱濏椖?2023AH050084)和國家自然科學基金項目(62273001、32372632)


Lightweight Dense Multi-scale Attention Network for Identification of Rust on Wheat Leaves
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    人工診斷小麥銹病成本高,、效率低,,已無法滿足現(xiàn)代農(nóng)業(yè)生產(chǎn)的需要。本文提出了一種輕量級密集多尺度注意力網(wǎng)絡模型(Mobile-Dense multi-scale attention net, Mobile-DMSANet),,用于自動識別田間自然場景中的小麥葉部銹?。l銹病和葉銹病),。該模型在輸入層設計了一個快速下采樣模塊(Fast subsampling block, FSB),,它在不增加計算成本的前提下提高模型的特征表達能力。模型的特征提取層使用3個輕量級特征提取模塊(Dense multi-scale attention, DMSA)來提取小麥葉部銹病的特征,。DMSA模塊設計了一個多尺度的3路卷積層(Multi-scale three-way convolution, MSTC)用于獲得不同尺度感受野,,以提高模型的表達能力和對不同尺寸銹病的感知能力,。DMSA模塊中6個MSTC層通過密集連接實現(xiàn)特征重用,不僅大大減少了模型的參數(shù)量,,而且提高了對這兩種相似的小麥葉部銹病的特征提取能力,。在DMSA模塊中還引入了協(xié)調(diào)注意力機制(Coordinated attention, CA),來提高對病害信息的敏感性,,并抑制圖像中的背景信息,。模型的輸出層使用Softmax函數(shù)實現(xiàn)小麥葉部銹病識別。結(jié)果表明,,Mobile-DMSANet模型在測試數(shù)據(jù)集上的識別準確率為96.4%,,高于經(jīng)典CNN模型(如ResNet50、AlexNet)和輕量級CNN模型(如ShufflenetV2,、DenseNet系列),。Mobile-DMSANet參數(shù)量為4.54×105,與其他輕量級模型相比大幅下降,。本文所設計模型可用于移動端小麥葉部銹病的自動識別,。

    Abstract:

    Artificial identification of wheat rust is costly and inefficient, and can no longer meet the needs of modern agricultural production. A lightweight dense multi-scale attention network model called Mobile-DMSANet was presented for the automatic identification of rust on wheat leaves (stripe rust and leaf rust) from images of natural scenes taken in the field. In the input layer of the network, a fast subsampling block (FSB) was used to improve the feature expression ability of the network without adding computational cost. In the feature extraction layer, three lightweight blocks called dense multi-scale attention (DMSA) blocks were used to extract the features of rust on wheat leaves. In the DMSA block, a multi-scale three-way convolution (MSTC) layer was designed to get different scales for the receptive fields, in order to improve the expressive ability of the network and its ability to perceive the features of rust disease at different scales. Six MSTC layers were used to achieve feature reuse by dense connections in the DMSA block, an approach that not only greatly reduced the number of parameters of the network but also improved the feature extraction ability for similar diseases. A coordinated attention (CA) block was also introduced to the DMSA block to increase the sensitivity to positional information and suppress background information in the image. The output layer of the network used a Softmax function to classify rust on wheat leaves. The results showed that the recognition accuracy of Mobile-DMSANet model on the test dataset was 96.4%, which was higher than that of other models. Mobile-DMSANet had only 454000 parameters, less than for other lightweight models. The proposed model can be used for the automatic identification of rust on wheat leaves using mobile devices.

    參考文獻
    相似文獻
    引證文獻
引用本文

鮑文霞,趙詩意,黃林生,梁棟,胡根生.基于輕量級密集多尺度注意力網(wǎng)絡的小麥葉部銹病識別方法[J].農(nóng)業(yè)機械學報,2024,55(11):21-31. BAO Wenxia, ZHAO Shiyi, HUANG Linsheng, LIANG Dong, HU Gensheng. Lightweight Dense Multi-scale Attention Network for Identification of Rust on Wheat Leaves[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(11):21-31.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-12-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-11-10
  • 出版日期:
文章二維碼