ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

YOLO算法在動(dòng)植物表型研究中應(yīng)用綜述
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(32401697)、江蘇省自然科學(xué)基金項(xiàng)目(BK20231004)和江蘇省科技計(jì)劃專項(xiàng)資金項(xiàng)目(BE2023369)


Review of Applying YOLO Family Algorithms to Analyze Animal and Plant Phenotype
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    動(dòng)植物表型是動(dòng)植物特征與性狀的定量描述,,表型特征的精準(zhǔn)計(jì)算與分析是推進(jìn)數(shù)字農(nóng)業(yè)發(fā)展的重要基礎(chǔ),。得益于深度學(xué)習(xí)技術(shù)的迅猛發(fā)展,以YOLO系列算法為代表的計(jì)算機(jī)視覺模型在動(dòng)植物表型分析任務(wù)中展現(xiàn)出了優(yōu)良性能和巨大潛力,。以家畜類,、家禽類、作物類,、果蔬類等動(dòng)植物為對象,,分別從目標(biāo)檢測、關(guān)鍵點(diǎn)檢測,、目標(biāo)分割3方面概述了YOLO系列算法應(yīng)用研究進(jìn)展,。最后指出YOLO系列算法未來發(fā)展趨勢,包括輕量化架構(gòu)設(shè)計(jì),、小目標(biāo)精準(zhǔn)檢測,、弱監(jiān)督學(xué)習(xí)、復(fù)雜場景部署,、大模型目標(biāo)檢測等,。

    Abstract:

    Plant and animal phenotypes are quantitative descriptions of their characteristics and traits. Accurate analysis of phenotypic features is an important prerequisite for the development of digital agriculture. The traditional phenotypic analysis task heavily relies on manual identification and measurement by agricultural experts, which is labor-intensive, costly, and sensitive to subjective judgments. Also, the traditional approach can hardly process high-throughput data. Benefited by the rapid development of the deep learning technique, as one of the most representative computer vision models, the YOLO family algorithms have shown excellent performance and great potential in plant and animal phenotypic analysis tasks, including disease diagnosis, behavior quantification, biomass estimation, and so on. In this review, livestock, poultry, crops, fruits, vegetables, and other plants and animals were chosen as the research targets. The research progress of YOLO family algorithm applications was summarized from three aspects, namely, object detection, key point detection, and object segmentation. Along the same lines, some commonly used datasets for plant and animal phenotyping tasks for subsequent researchers were presented. Finally, the potential problems faced by current researching and the future development trend of YOLO family algorithms were highlighted, including lightweight architecture design, accurate detection of small targets, weakly supervised learning, complex scene deployment, and large model for target detection. The research aimed at providing summarization and guidance for plant and animal phenotypic analysis based on YOLO family algorithms and promoting the further development of digital agriculture.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

翟肇裕,張梓涵,徐煥良,王海清,陳曦,楊陳敏. YOLO算法在動(dòng)植物表型研究中應(yīng)用綜述[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(11):1-20. ZHAI Zhaoyu, ZHANG Zihan, XU Huanliang, WANG Haiqing, CHEN Xi, YANG Chenmin. Review of Applying YOLO Family Algorithms to Analyze Animal and Plant Phenotype[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(11):1-20.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-08-17
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-11-10
  • 出版日期:
文章二維碼