Abstract:To overcome the challenges of slow response, poor control accuracy, and poor anti-interference performance of in-wheel motor, a super-twisting sliding mode control (STSMC) in-wheel motor speed and torque joint control strategy was developed based on online state estimation of speed and angle, which was based on the sliding mode control (SMC). Under the single-lane change condition, the speed of each in-wheel motor was controlled when the vehicle changed lanes at a constant speed, meeting the Ackermann steering requirements. After lane changing, the torque of each in-wheel motor was controlled by using a sinusoidal transition method, allowing the motor to quickly and smoothly output the desired torque and accelerate the vehicle in a straight line. To prevent errors or damage of the speed and angle sensors, the maximum correlation entropy square root generalized high-order cubature Kalman filter (MCSRGHCKF) was used for sensorless estimation of the speed and rotor angle. Based on experimental testing, the rotor angle estimation error was -0.05 rad, and speed error was 0.3 r/min, both of which met the motor control requirements. From the start of the motor to the uniform speed operation stage, the STSMC algorithm was used for control, with speed overshoot of 6.33%, maximum output torque of 0.35 N·m, response time of 0.22 s, steady-state speed ripple of ±0.5 r/min, and torque ripple of ±0.01 N·m. Compared with PID and SMC algorithms, the control effect was better. In the speed switching torque control, the torque can smoothly transition according to the sine function, with maximum overshoot of only 2.86%, and the motor ran smoothly.