ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于環(huán)境變量篩選與機器學習的土壤養(yǎng)分含量空間插值研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(42161042)、兵團科技創(chuàng)新領(lǐng)軍人才項目(2023CB008-10)和兵團農(nóng)業(yè)核心攻關(guān)項目(2023AA601)


Spatial Interpolation of Soil Nutrients Content Based on Environmental Variables Screening and Machine Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了提高農(nóng)田土壤養(yǎng)分含量空間插值精度,,準確掌握土壤養(yǎng)分的空間分布特征,,以新疆瑪納斯河流域綠洲為研究區(qū)域,,測定土壤有機質(zhì)含量、全氮含量,、有效磷含量,、速效鉀含量、pH值和鹽分含量,,協(xié)同經(jīng)度,、緯度、地形,、氣象和植被指數(shù)因子作為環(huán)境變量,,經(jīng)過皮爾遜相關(guān)系數(shù)(Person correlation coefficient,PCC),、方差膨脹系數(shù)(Variance inflation factor,,VIF)和極端梯度提升(Extreme gradient boosting,XGBoost)算法進行變量篩選,,采用決策樹(Decision tree,,DT)、隨機森林(Random forest,,RF),、徑向基函數(shù)神經(jīng)網(wǎng)絡(Radial basis function,RBF)和長短期記憶網(wǎng)絡(Long short-term memory,,LSTM)4種機器學習模型與普通克里格(Ordinary Kriging,,OK)方法,對研究區(qū)農(nóng)田土壤有機質(zhì),、全氮,、有效磷和速效鉀含量進行空間插值。結(jié)果表明:研究區(qū)土壤有機質(zhì),、全氮,、有效磷、速效鉀含量分別為0.226~32.275 g/kg,、0.117~1.272 g/kg,、3.159~53.884 mg/kg和81.510~488.422 mg/kg,變異系數(shù)為30.636%~43.648%,,均屬于中等程度變異,。PCC、VIF和XGBoost變量篩選均表明,,土壤有機質(zhì),、全氮、有效磷和速效鉀間具有一定的關(guān)聯(lián)性,,可用于目標屬性空間插值的環(huán)境變量,,但不同變量篩選方法對經(jīng)度,、緯度、地形,、氣象和植被指數(shù)因子篩選結(jié)果具有一定的差異性,。XGBoost方法可以更有效地篩選出對空間插值結(jié)果重要的環(huán)境變量,且基于此方法篩選變量后建立的模型精度明顯優(yōu)于PCC和VIF篩選變量后建立的模型精度,,而且協(xié)同環(huán)境變量的機器學習模型精度普遍優(yōu)于未加入環(huán)境變量的OK模型精度,,同一土壤養(yǎng)分含量空間插值模型精度從大到小依次為RF、LSTM,、RBF,、DT、OK,,其中基于XGBoost篩選出的變量對土壤有機質(zhì),、全氮、有效磷和速效鉀含量構(gòu)建的RF空間插值模型精度相較于未加入環(huán)境變量的OK模型有顯著提高,,決定系數(shù)分別提高43.02%,、101.00%、86.04%和137.89%,,均方根誤差分別降低27.39%,、42.78%,、13.12%和28.39%,,平均絕對誤差分別降低29.01%、43.84%,、11.20%和29.62%,。利用RF模型對研究區(qū)農(nóng)田土壤養(yǎng)分進行反演得到土壤有機質(zhì)和全氮含量具有較強的空間分布一致性,含量較高的主要集中在研究區(qū)南部和東部區(qū)域,,有效磷和速效鉀含量具有一定的空間相似性,,東南部、中北部區(qū)域含量較低,。綜上,,XGBoost變量篩選方法結(jié)合RF模型可以更好地實現(xiàn)土壤養(yǎng)分空間插值,可作為土壤養(yǎng)分空間插值的有效方法,。

    Abstract:

    In order to improve the accuracy of spatial interpolation of soil nutrients in farmland and accurately grasp the spatial distribution characteristics of soil nutrients, variable screening were performed by using Pearson correlation coefficient, variance inflation factor and extreme gradient boosting algorithms. Then, decision tree, random forest, radial basis function and long short-term memory were used with ordinary Kriging to interpolation the content of soil nutrients in the farmland. The results showed that the soil organic matter, total nitrogen, available phosphorus, and available potassium contents in the study area ranged from 0.226 g/kg to 32.275 g/kg, 0.117 g/kg to 1.272 g/kg, 3.159 mg/kg to 53.884 mg/kg, and 81.510 mg/kg to 488.422 mg/kg, respectively, with moderate variability. PCC, VIF and XGBoost variable screening all showed that soil organic matter, total nitrogen, available phosphorus and available potassium had some correlation among them and can be used as environmental variables for the spatial interpolation of target attributes. XGBoost method can more effectively screen out the environmental variables that were important to the spatial interpolation results, and the accuracy of the model built after screening variables based on this method was significantly better than the accuracy of the model built after screening variables by PCC and VIF. Moreover, the accuracy of the machine learning model with the synergistic environmental variables was generally better than the accuracy of the OK model without environmental variables, and the accuracy of the spatial interpolation model for the same soil nutrient content showed the following order: RF>LSTM>RBF>DT>OK. Using the RF model to invert soil nutrients in the study area, it was found that the soil organic matter and total nitrogen higher content was mainly concentrated in the southern and eastern regions of the study area, the available phosphorus and available potassium lower content in the southeastern and north-central regions. In summary, the XGBoost variable screening method combined with RF model can better realize the spatial interpolation of soil nutrients, and can be used as an effective method for the spatial interpolation of soil nutrients.

    參考文獻
    相似文獻
    引證文獻
引用本文

咸陽,宋江輝,王金剛,李維弟,張文旭,王海江.基于環(huán)境變量篩選與機器學習的土壤養(yǎng)分含量空間插值研究[J].農(nóng)業(yè)機械學報,2024,55(10):379-391. XIAN Yang, SONG Jianghui, WANG Jin’gang, LI Weidi, ZHANG Wenxu, WANG Haijiang. Spatial Interpolation of Soil Nutrients Content Based on Environmental Variables Screening and Machine Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(10):379-391.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-12-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-10-10
  • 出版日期:
文章二維碼